《合并同类项》教学设计.docx
《《合并同类项》教学设计.docx》由会员分享,可在线阅读,更多相关《《合并同类项》教学设计.docx(6页珍藏版)》请在咨信网上搜索。
《合并同类项》教学设计及反思 教材分析 本节课是学生在学习了用字母表示数、单项式、多项式以及有理数的基础上,对同类项合并、探索、研究的一个课程。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。即合并同类项是有理数运算的延伸与拓展,是简化数学运算的常用方法,对于解决一些实际问题和进一步学习有着深远的意义。因此,这节课具有承上启下的作用。 学情分析 新知识的学习应建立在学生的已有认知发展水平上,因此从学生己有的生活知识经验出发,通过观察、思考、讨论,把几个代数式进行分类,从而引出同类项这个概念,理解同类项的定义以及满足同类项的条件。合并同类项是在 “乘法分配律”基础上的延伸和拓展,合并同类项是式的运算,可类比“乘法分配律”数的运算来学习。通过引导学生类比数的运算来进行式的运算,利用关于数的分配律对式子进行化简,充分体现“数式通性”。让学生体会由数到式、由具体到一般的思想方法,以及体会数学来源于生活,又作用于生活,从而激发学生学习数学的兴趣。 教学重点和难点 重点:同类项的定义;合并同类项 难点:识别同类项;合并同类项 教学过程 一、复习单项式、多项式的概念及有理数的运算律,导入新课 让学生回忆、发言,最 后老师加以补充、巩固。 设计意图:复习相关概念及有理数的运算,为合并同类项打基础。 活动一:观察单项式:3x2y, -4xy2, -3, 5x2y, 2xy2, 5,把其中具有相同特征的项归为一类,你是怎么分类的? 设计意图:知识来源于生活,又服务于生活。分类是日常生活中常见的问题,由分类引出同类项的概念,顺理成章。通过观察、思考、分析、归纳识别同类项的特征,为合并同类项作准备。 “物以类聚,人以群分”,我们常常把具有相同特征的项归为一类。同学们,你们认为上述单项式中哪些项可以归一类?为什么?可分为几类?给出一定的时间,让学生通过观察、思考、交流、归纳得出:3x2y与5x2y可归为一类,-4xy2与2xy2可归为一类,-3与5也可归为一类,共可分为三类。其中3x2y与5x2y中只有系数不同,各自所含的字母相同,都是x、y,并且x的指数都是2,y的指数都是1;-4xy2与2xy2也只有系数不同,各自所含的字母相同,都是x、y,并且x的指数都是1,y的指数都是2。这是同类项的特征:所含字母相同;‚相同字母的指数也分别相同,从而引出同类项概念,引出课题,板书课题:合并同类项。 二、讲授新课 板书:1、同类项的特征:所含字母相同;相同字母的指数也分别相同 2、同类项概念:所含字母相同,相同字母的指数也分别相同的项,叫做同类项; 几个常数项也是同类项。 想一想:1、下列各式中具有上述特征吗?他们是不是同类项? (1) 10a与20a; (2)-9x2y3 和 5x2y3; (3) 4m2n和-4nm2; (4) 4abc与4ac; (5) mn与-mn; (6) 23与42 2、如果3xmy2与4xyn是同类项,则 m = , n = 注意:★同类项与字母顺序无关; ★同类项与系数无关! 设计意图:强化同类项的特征,加深对同类项概念的理解,感受收获知识的喜悦。识别同类项是本课的关键,是重点内容之一,是合并同类项的基础和需要。 活动二:乐乐一家去肯德基:爸爸吃2个汉堡包、1个鸡翅,1杯可乐。妈妈吃1个汉堡包、2个鸡翅,1杯可乐。乐乐吃1个汉堡包,1个鸡翅,1杯可乐如果让乐乐去买这些东西,他怎样对服务员说呢? 乐乐说:我买 个汉堡包, 个鸡翅, 杯可乐。 同学们回答了上面的问题,得出共同结论:现实生活中为了方便,往往要对事物进行分类,同时同一类的东西可以合并在一起。 设计意图:新问题能引起学生的兴趣,激发学生探求新知的欲望,让学生带着问题去探究合并同类项的方法和依据。 探究1:(1)运用有理数的运算定律计算:8n+5n = (8+5)n = 13n 100×2+252×2=( ________ )×2= ×2 100×(-2)+252×(-2)= ( ________ )×(-2)= ×(-2) (2)根据(1)中的方法完成下面的运算,并说说其中的道理。 100t + 252t=(_________)t= t 探究2 :填空:(1) 100t-252t=(_____ )t= t (2) 3x2+2x2=(__ _ )x2= x2 (3) 3a2b-4a2b=(___ )a2b= a2b 设计意图:让学生在独立完成的基础上,观察、分组讨论, 通过类比数的运算,探究式的运算。让学生体会有理数的运算定律在整式运算中同样适用,并从中找到合并同类项的方法依据。体验探求规律的思想方法,及合作的愉快、成功的喜悦。 板书: 3、合并同类项:把多项中的同类项合并为一项,叫做合并同类项。 4、合并同类项法则:把同类项的系数相加,字母和字母的指数保持不变。 5、合并同类项的依据:乘法分配律 小练习:判断下列合并是否正确,错误的改正 1、5 x2+6 x2=11x4 2、5x+2y=7xy 3、5 x2-3 x2=2 4、16xy-16xy=0 练习:仿照式子 2a+3a=(2+3 )a = 5a计算 1、 2x - 3x = 2、 - 2x - 3x = 3、- 2m + 3m = 4、 - 5y + 4y = 设计意图:让学生在理解和适当记忆合并同类项法则后,尝试进行两项的合并练习,熟悉法则并对合并时的符号有所把握。 活动三 :用不同记号标出下列各多项式中的同类项,并合并同类项: (1) 4x2+2x+7+3x-8x2-2 (2) -3x2y+2x2y+3xy2-2xy2 (3) 4a2+3b2+2ab-4a2-4b2 给出一定的时间让学生思考、讨论、计算,最后师生共同完成解题过程 设计意图:做标记是为了让学生做到不重不漏,进一步区分不同的同类项,继而合并同类项,加深对合并同类项方法的理解。 解:(1) 4x2 + 2x + 7 + 3x - 8x2 – 2 (2) -3x2y +2x2y +3xy2-2xy2 =(4-8)x2+(2+3) x+(7-2) =(-3+2) x2y+(3-2) xy2 =-4 x2+5x+5 =- x2y+ xy2 (3) 4a2 + 3b2 + 2ab - 4a2 - 4b2 =(4-4)a2+(3-4) b2+2ab =- b2+2ab 如果一个多项式中有同类项,那么我们常常要把同类项合并起来,使得结果简化。 练习:(1)a-3m+2a+2m (2)5x-y-2x+2y 活动四:提问:在我们合并同类项的过程中,哪一类我们容易出错?谁有好的办法能有效地降低错误? 如a-3m+2a+2m ,能有效地降低错误的办法: 1、还原成加法:原式= a+(-3m)+2a+2m =(a+2a)+〔(-3m)+2m〕=3a-m 2、正在前,负在后:原式= a+2a+2m-3m =(a+2a)+(2m-3m )=3a- m 3、用生活意义去理解:-3m表示减3m,2m表示加上2m, 合起来最后效果即减去m,即-m。 设计意图:通过对学生此类问题的错误预设,知道学生在此要出错,让做对的学生介绍其正确方法,能有效的减少错误,并能提高本节的课堂学习效率,同时能调动学生学习的积极性,也能树立学生的自信心。 活动五:当x=-2时,求多项式3x2+4x-2x2-x+x2-3x-1 值 设计意图:通过学生的观察、讨论、比较,最后得出:这类题目是要先合并多项中的同类项,再代数进去求值,这样就可以使得计算简便。 解:3x2+4x-2x2-x+x2-3x-1 =(3-2+1)x2+(4-1-3)-1 =2x2-1 当x=-2时, 原式=2×(-2)2-1=2×4-1=7 三、小结: 通过同学们的研讨我们发现,一个数学概念的引入往往是运算的需要,或者是问题的需要。要学好数学知识首先就应该养成观察与思考的习惯,其次应逐步形成透过现象看本质的思维品质。 1、同类项必备的条件: (1)所含字母相同。 (2)相同字母的指数分别相同。 2、只有同类项才能合并,不是同类项的不能合并; 3、合并同类项,只合并系数,字母与字母的指数不变; 4、在求代数式的值时,可先合并同类项将代数式化简, 然后再代入数值计算,这样往往会简化运算过程。 四、作业:课本91页习题3.5第1题全部,第2题的第(1)小题 板书设计 合并同类项 1、同类项的特征: 2、合并同类项法则: (1)所含字母相同。 把同类项的系数相加, (2)相同字母的指数分别相同。 字母和字母的指数保持不变。 3、合并同类项的依据:乘法分配律 4、例题讲解:(1) 4x2+2x+7+3x-8x2-2 (2) -3x2y+2x2y+3xy2-2xy2 5、总结系数异号时的有效降低错误的合并方法:- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 合并同类项 合并 同类项 教学 设计
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文