隐函数组概念隐函数组定理反函数组与坐标变换省名师优质课赛课获奖课件市赛课一等奖课件.ppt
《隐函数组概念隐函数组定理反函数组与坐标变换省名师优质课赛课获奖课件市赛课一等奖课件.ppt》由会员分享,可在线阅读,更多相关《隐函数组概念隐函数组定理反函数组与坐标变换省名师优质课赛课获奖课件市赛课一等奖课件.ppt(27页珍藏版)》请在咨信网上搜索。
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,上一页,下一页,主 页,返回,退出,本资料仅供参考,不能作为科学依据。谢谢。本资料仅供参考,不能作为科学依据。感谢您,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,本资料仅供参考,不能作为科学依据。谢谢。本资料仅供参考,不能作为科学依据。感谢您,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,本资料仅供参考,不能作为科学依据。谢谢。本资料仅供参考,不能作为科学依据。感谢您,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,本资料仅供参考,不能作为科学依据。谢谢。本资料仅供参考,不能作为科学依据。感谢您,2,隐函数组,第1页,隐函数组概念,隐函数组定理,反函数组与坐标变换,第2页,一、隐函数组概念,隐函数存在定理还能够推广到方程组情形,.,以两个方程确定两个隐函数情况为例,比如,方程组,第3页,隐函数组在,D,上成立恒等式:,第4页,二、,隐函数组定理,其中,称为,F,、,G,雅可比,(Jacobi),行列式,.,第5页,第6页,第7页,例,.,设,解,:,方程组两边对,x,求导,并移项得,求,由题设,故有,第8页,类似地可计算,:,答案,:,第9页,三、,反函数组与坐标变换,设函数组,是定义在,x,y,平面点集,B,上两个,函数,其值域为,若对每一点,都有唯一确定点,与,u,v,一起满足,方程组,由此产生,上一个函数组:,称方程组为方程组反函数组,.,它们满足:,定义在,第10页,反函数组存在性问题,是隐函数组存在性,反函数组存在性问题,是隐函数组存在性,应用定理,18.4,,可得下述定理:,问题一个特殊情形,将方程组改写成,反函数组存在性,第11页,第12页,第13页,例,2:,直角坐标与极坐标之间坐标变换公式为,所以,除原点外,因为,从而,除原点外,在一切点上由函数组:,可确定一反函数组:,第14页,例,3:,直角坐标与球坐标之间坐标变换公式为,因为,第15页,所以,在,即除去,z,轴上一切点,,方程组,可确定一反函数组:,第16页,例,.,设函数,在点,(,u,v,),某一,1),证实函数组,(,x,y,),某一邻域内,2),求,解,:,1),令,对,x,y,偏导数,.,在与点,(,u,v,),对应点,邻域内有连续偏导数,且,唯一确定一组单值、连续且含有,连续偏导数反函数,第17页,式两边对,x,求导,得,则有,由,定理,3,可知结论,1),成立,.,2),求反函数偏导数,.,第18页,从方程组,解得,同理,式两边对,y,求导,可得,第19页,从方程组,解得,同理,式两边对,y,求导,可得,第20页,例,:,计算极坐标变换,反变换导数,.,一样有,所以,因为,第21页,内容小结,1.,隐函数,(,组,),存在定理,2.,隐函数,(,组,),求导方法,方法,1.,利用复合函数求导法则直接计算,;,方法,2.,利用微分形式不变性,;,方法,3.,代公式,思索与练习,设,求,第22页,提醒,:,第23页,解法,2.,利用全微分形式不变性同时求出各偏导数,.,由,d,y,d,z,系数即可得,第24页,备用题,分别由以下两式确定,:,又函数,有连续一阶偏导数,1.,设,解,:,两个隐函数方程两边对,x,求导,得,(,考研,),解得,所以,第25页,2.,设,是由方程,和,所确定函数,求,解法,1,分别在各方程两端对,x,求导,得,(99,考研,),第26页,解法,2,微分法,.,对各方程两边分别求微分,:,化简得,消去,可得,第27页,- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 概念 定理 反函数 坐标 变换 名师 优质课 获奖 课件 市赛课 一等奖
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文