基于指数分析的奇异型集中系统的最优参数.pdf
《基于指数分析的奇异型集中系统的最优参数.pdf》由会员分享,可在线阅读,更多相关《基于指数分析的奇异型集中系统的最优参数.pdf(7页珍藏版)》请在咨信网上搜索。
1、井冈山大学学报(自然科学版)11文章编号:1674-8085(2023)04-0011-07基于指数分析的奇异型集中系统的最优参数*沈婷1,*王跃1,2(1.贵州民族大学数据科学与信息工程学院,贵州,贵阳550025;2.贵州大学数学与统计学院,贵州,贵阳550025)摘要:在一般开区间的去心邻域内考虑一个具有弱奇异指数的集中参数系统。为了获得系统解的存在性和解析性,导函数的关系得到最优参数。所得结论补充并丰富了已有文献的结果。关键词:弱奇异;分析策略;最优参数;函数构造中图分类号:O175.23文献标识码:ADOI:10.3969/j.issn.1674-8085.2023.04.003OP
2、TIMALPARAMETER OFASINGULAR LUMPED PARAMETERSYSTEM BASED ON EXPONENTIALANALYSISSHEN Ting1,*WANG Yue1,2(1.School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang,Guizhou 550025,China;2.School of Mathematics and Statistics,Guizhou University,Guiyang,Guizhou 550025,China)Abst
3、ract:A lumped parameter system with weak singular exponent is considered in the noncentral neighborhoodof an interval.Three steps are set to obtain that the existence and analyticity of the solutions for the system.Firstof all,the appropriate coefficient through the exponential analysis strategy is
4、found.Then,the correctness of theresults are analyzed and verified by the way of function construction.Finally,the optimal parameter is obtained bycombining the relationship between the extreme point of the function and the derivative function.Our results leadsome known results of the literatures to
5、 complete and enrich.Key words:weak singularity;analysis strategy;optimal parameter;construction method of function收稿日期:2022-07-12;修改日期:2022-10-15基金项目:国家自然科学基金项目(11661021,11861021);贵州民族大学科研项目(GZMUZK2021YB19);贵州省研究生科研基金立项项目(黔教合YJSCXJH2020083);贵州大学研究生创新基金(贵大研2021-891)作者简介:*王跃(1988-),男,贵州毕节人,博士,主要从事最优控
6、制,非线性分析研究(E-mail:).在一个抽象系统中,如果组成系统的部件分为有限个,则称这类系统为离散系统;如果可以用常微分方程表示系统的状况,则称之为集中参数系统。相应地,如果系统状况的描述不能用一般形式给出,而需要利用偏微分方程来解释时,对应的系统则称之为分布参数系统。在两种参数系统中,通常设置不少于一个被称之为参数的量,该参数要么是常数,要么只与时间有关。在稳态问题中,参数与函数自变量的选取无关。参数问题的研究涉及到生活的各方面,在工业上,恰当参数的计算,如在黑箱问题,非接触型可观测问题以及大量复杂的混合问题中都相当重要。例如,在文献1中,刘伟等立足于微光伏系统,对太阳能电池输出参数与
7、系统之间的相关激励情况进行了依赖性分析;文献2中,王志强等给出了平行连杆式的锻造操作机吊挂系统的关键参数的设计思路。文献3中,陈蓓等对高温风洞内的材料燃烧利用激光扫描手段获取数据并对燃烧参数进行了计算估计。由于在车辆行驶中的性能是人们的重要选择,因此文献4中,聂小勇等研究了汽车后副车架台架试验的疲劳失效问题,对其进行刚度、强度和疲劳分析。可见,参数的第44卷第4期Vol.44 No.4井冈山大学学报(自然科学版)2023年7月Jul.2023Journal of Jinggangshan University(Natural Science)11井冈山大学学报(自然科学版)12合理选择,不仅仅
8、是有效的参数,还要对其进行更有益于人们生产劳作的方式改进,合理的参数设置能够让机械更加良好运行,把控良好参数,是解决各种机器寿命和物尽其用的有效措施。注意到文献5中,郭军团等以车辆电池的设计为例,通过恰当的工具进行分析优化散热效果,受此启发而研究描述其他系统的优化问题。传送带问题是一类典型的含参数问题,在研究传送带运转时,从外观宏观上看,带片自身朝着运行方向作类似直线运动,但从微观上看,带片自身也在不断振动并且边沿的振动一般带有颤动,因此带片边沿的频率通常比其他位置高很多。振动的强弱,对带片上运输的物件将产生一定的影响。特别对于精密材料,强烈的振动往往会导致材料内部受损。因此,对相关参数的合理
9、设计,从控制的角度来说是优化系统性能的重要因素。据文献6介绍,方程2122201(1)d02(0)00|Tuxxvuvxxuux,(1)描述了传送带自身从t=0时刻启动到t=1时刻达到平稳(即速度恒为常数)时的状态,其中v为传送带转速,vT0是与匀速度相关的正常量。方程(1)具有物理意义,如文献7的Remrk 1.2有所介绍。正如文献6所述,作为常态转速0v0适当小时至少存在两个正解,当=0时有无穷多古典解。此外,作者提出(ab|u|2dx)这种情形的问题为负模量基尔霍夫型问题,供物理意义的研究参考。而在文献9中构造出了关于方程2|dpabuxuux,(5)当=1且p1时各种解的表达式,此时a
10、,bR,扩展了其他文献对a,b取正数的限制,同时给出了1时的计算方式。文献10则对p1,2*1)时问题(5)的零边值问题进行研究,我们利用Ljusternik-Schnirelman型极小极大原理获得该分布系统无穷多解的存在性,并给出N=1时集中系统解的表达式。在文献11中,WANG Y等研究了分布参数系统。2|d(),0,abuxug xxux,(6)解的存在性,并给出了最优参数*,得到=*井冈山大学学报(自然科学版)13时系统(6)存在唯一两个解,分居于*左右且不为零时系统(6)分别存在唯一解或者唯一三个解。此外作者还计算出最优参数*的准确值,并给出问题(6)当a=b=1,=(0,1)且f
11、(x)=1时*=4/3为集中参数系统最优参数。1问题及主要结论主要受到文献8、文献11及文献12的启发,且基于指数分析策略,考虑如下奇异型集中系统:d22cd(,)/,()()0c dabux uxc duu cu d,(7)解的存在性,其中a,b都是正常数,(c,d)为R中的有界区间,参数R,(0,1)称为弱奇异指数。一方面要给出方程解的存在性和解析性,另一方面要寻找解的数目发生变化时的最优参数*。定理定理1假设a0,b0,01,那么存在最优参数*0时,系统(7)存在至少1个解析正解u1C,c d;(ii)当=0时,系统(7)存在无穷多个解析正解1 ,iiuC c d;(iii)当(*,0)
12、时,系统(7)存在至少2个解析正解u1,u2C,c d;(iv)当=*时,系统(7)存在至少1个解析正解u1C,c d。注记注记1当0,b0,00,使得(0,*)时问题(8)在10()H中存在至少2个弱的正解。对比文献13,我们考虑的情形和采用的方法不同。文献13在三维有界光滑区域上利用变分方法只获得分布参数系统解的存在性,而我们在一维去心区间内基于指数分析给出集中参数系统的解。文献13只考虑参数为足够小的正数的情形,而我们考虑任意参数的情形并计算出最优参数。显然,当N=1时,系统(8)的任何一种解也是系统(7)对应的解;由于系统(7)中去除了区间中点,从而系统(7)的解未必是系统(8)的解。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 指数 分析 异型 集中 系统 最优 参数
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。