高中数学-坐标系与参数方程教案(教师版)-新人教A版选修4-4.doc
《高中数学-坐标系与参数方程教案(教师版)-新人教A版选修4-4.doc》由会员分享,可在线阅读,更多相关《高中数学-坐标系与参数方程教案(教师版)-新人教A版选修4-4.doc(12页珍藏版)》请在咨信网上搜索。
数学选修4-4 坐标系与参数方程(教师版) 主干知识 一、坐标系1.平面直角坐标系的建立:在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。 2.空间直角坐标系的建立:在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。 3.极坐标系的建立:在平面上取一个定点O,自点O引一条射线OX,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。 (其中O称为极点,射线OX称为极轴。) ① 设M是平面上的任一点,表示OM的长度,表示以射线OX为始边,射线OM为终边所成的角。那么有序数对称为点M的极坐标。其中称为极径,称为极角。 约定:极点的极坐标是=0,可以取任意角。 4.直角坐标与极坐标的互化 以直角坐标系的O为极点,x轴正半轴为极轴,且在两坐标系中取相同的单位长度平面内的任一点P的直角坐标极坐标分别为(x,y)和,则 二、曲线的极坐标方程 1.直线的极坐标方程:若直线过点,且极轴到此直线的角为,则它的方程为: 几个特殊位置的直线的极坐标方程 (1)直线过极点 (2)直线过点且垂直于极轴 (3)直线过且平行于极轴 图: 方程: 2.圆的极坐标方程: 若圆心为,半径为r的圆方程为: 几个特殊位置的圆的极坐标方程 (1)当圆心位于极点 (2)当圆心位于 (3)当圆心位于 图: 方程: 3.直线、圆的直角坐标方程与极坐标方程的互化 利用: 三、参数方程 1.参数方程的意义 在平面直角坐标系中,若曲线C上的点满足,该方程叫曲线C的参数方程,变量t是参变数,简称参数 2.参数方程与普通方程的互化 (1)参数方程化为普通方程 常见参数方程化为普通方程,并说明它们各表示什么曲线: ⑴(为参数); ⑵ (3) (4)(t为参数) (5)(为参数) ☆参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围! (2)普通方程化为参数方程 常见化普通方程为参数方程, 1、圆的参数方程。 2、经过点P。 3、椭圆的参数方程。 4、抛物线 普通方程化为参数方程需要引入参数,选择的参数不同,所得的参数方程也不一样。 二、考点阐述 考点1、极坐标与直角坐标互化 例题1、在极坐标中,求两点之间的距离以及过它们的直线的极坐标方程。 练习1.1、已知曲线的极坐标方程分别为,,则曲线与交点的极坐标为 . 【解析】我们通过联立解方程组解得,即两曲线的交点为。 1.2. (宁夏09)已知圆C:,则圆心C的极坐标为_______ 答案:( ) 练习1.2(2009丹东)(1)已知点c极坐标为,求出以C为圆心,半径r=2的圆的极坐标方程(写出解题过程); (2)P是以原点为圆心,r=2的圆上的任意一点,,M是PQ中点,当点P在圆上运动时,求点M的轨迹的参数方程。 (2)依题意 考点2、极坐标与直角坐标方程互化 例题2、福建省龙岩市2009年 已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是参数),点是曲线上的动点,点是直线上的动点,求||的最小值. 解:曲线的极坐标方程可化为, 其直角坐标方程为,即. ……………(3分) 直线的方程为. 所以,圆心到直线的距离 ……………………(6分) 所以,的最小值为. …………………………(10分) 练习2.1、(沈阳二中2009)设过原点的直线与圆:的一个交点为,点为线段的中点。 (1) 求圆C的极坐标方程; (2) 求点M轨迹的极坐标方程,并说明它是什么曲线. 解:圆的极坐标方程为……4分 设点的极坐标为,点的极坐标为, ∵点为线段的中点, ∴, ……7分 将,代入圆的极坐标方程,得 ∴点轨迹的极坐标方程为,它表示圆心在点,半径为的圆. ……10分 练习2.2 考点3、参数方程与直角坐标方程互化 例题3:(2009学年海南省)已知曲线的参数方程为(为参数),曲线的极坐标方程为. (1)将曲线的参数方程化为普通方程,将曲线的极坐标方程化为直角坐标方程; (2)曲线,是否相交,若相交请求出公共弦的长,若不相交,请说明理由. 解:(1)由得 ∴曲线的普通方程为 ∵ ∴ ∵ ∴,即 ∴曲线的直角坐标方程为 …………………………………(5分) (2)∵圆的圆心为,圆的圆心为 ∴ ∴两圆相交 设相交弦长为,因为两圆半径相等,所以公共弦平分线段 ∴ ∴ ∴公共弦长为……………………(10分) 练习3.1(本小题满分10分)选修4-4:坐标系与参数方程. 已知曲线C:为参数,0≤<2π), (Ⅰ)将曲线化为普通方程; (Ⅱ)求出该曲线在以直角坐标系原点为极点,轴非负半轴为极轴的极坐标系下的极坐标方程. (Ⅰ) … 5分 (Ⅱ) … 10分 练习3.2(08海南)已知曲线C1:,曲线C2:。 (1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数; (2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线,。写出,的参数方程。与公共点的个数和C1与C2公共点的个数是否相同?说明你的理由。 考点4:利用参数方程求值域 例题4、(2008年宁夏) 在曲线:上求一点,使它到直线:的距离最小,并求出该点坐标和最小距离。 解:直线C2化成普通方程是x+y-2-1=0……………………………………2分 设所求的点为P(1+cos,sin),……………………………………………3分 则C到直线C2的距离d=…………………………5分 =|sin(+)+2|……………………………………7分 当时,即=时,d取最小值1………………………………9分 此时,点P的坐标是(1-,-)……………………………………10分 练习4.1 (09厦门)在平面直角坐标系xOy中,动圆的圆心为 ,求的取值范围.. 【解】由题设得(为参数,R). …………………………3分 于是 , ………………………6分 所以 . ………………………10分 练习4.2.(宁夏09)(本小题满分10分) 已知曲线的极坐标方程是,设直线的参数方程是(为 参数). (Ⅰ)将曲线的极坐标方程转化为直角坐标方程; (Ⅱ)设直线与轴的交点是,曲线上一动点,求的最大值. 答案:(本小题满分10分) 解:(1)曲线的极坐标方程可化为: 又 . 所以,曲线的直角坐标方程为: . (2)将直线的参数方程化为直角坐标方程得: 令 得 即点的坐标为 又曲线为圆,圆的圆心坐标为,半径, 则 ∴ 考点5:直线参数方程中的参数的几何意义 例题5:2009年泉州 已知直线经过点,倾斜角, ①写出直线的参数方程; ②设与圆相交与两点,求点到两点的距离之积. 解 (1)直线的参数方程为,即. 3分 (2)把直线代入, 得,, 6分 则点到两点的距离之积为. 10分 练习5.1抚顺一中2009 求直线()被曲线所截的弦长. 解:将方程,分别化为普通方程: ,--------------------------------------(5分) -------------------------------------------------------------------------10分 练习5.2大连市2009 已知直线 (I)求直线l的参数方程; (II)设直线l与圆相交于M、N两点,求|PM|·|PN|的值。 解:(Ⅰ)的参数方程为, 即。 …………5分 (Ⅱ)由 可将,化简得。 将直线的参数方程代入圆方程得 ∵,∴。 …………10分 练习5.3(宁夏09)若直线的参数方程为(t为参数),则直线的斜率为() A. B. C.— D.- 答案:(C ) 3、(宁夏09)极坐标方程ρ=cosθ和ρ=sinθ的两个圆的圆心距是( ) A. 2 B. C. 1 D. 答案:( D) 一、选择题 1.若直线的参数方程为,则直线的斜率为( ) A. B. C. D. 2.下列在曲线上的点是( ) A. B. C. D. 3.将参数方程化为普通方程为( ) A. B. C. D. 4.化极坐标方程为直角坐标方程为( ) A. B. C. D. 5.点的直角坐标是,则点的极坐标为( ) A. B. C. D. 6.极坐标方程表示的曲线为( ) A.一条射线和一个圆 B.两条直线 C.一条直线和一个圆 D.一个圆 7.圆的圆心坐标是( ) A. B. C. D. 二、填空题 8.直线的斜率为______________________。 9.参数方程的普通方程为__________________。 10.已知直线与直线相交于点,又点, 则_______________。 11.直线被圆截得的弦长为______________。 12.直线的极坐标方程为____________________。 13.极坐标方程分别为与的两个圆的圆心距为_____________。 三、解答题 1.已知点是圆上的动点, (1)求的取值范围; (2)若恒成立,求实数的取值范围。 2.求直线和直线的交点的坐标,及点 与的距离。 3.在椭圆上找一点,使这一点到直线的距离的最小值。 4、(宁夏09)已知椭圆C的极坐标方程为,点F1,F2为其左,右焦点,直线的参数方程为. (1)求直线和曲线C的普通方程; (2)求点F1,F2到直线的距离之和. 数学选修4-4 坐标系与参数方程 一、选择题 1.D 2.B 转化为普通方程:,当时, 3.C 转化为普通方程:,但是 4.C 5.C 都是极坐标 6.C 则或 二、填空题 1. 2. 3. 将代入得,则,而,得 4. 直线为,圆心到直线的距离,弦长的一半为,得弦长为 5. ,取 三、解答题 1.解:(1)设圆的参数方程为, (2) 2.解:将代入得, 得,而,得 3.解:设椭圆的参数方程为, 当时,,此时所求点为。 4解: (Ⅰ) 直线普通方程为; ………………………………3分 曲线的普通方程为. ……………6分 (Ⅱ) ∵,, …………………7分 ∴点到直线的距离 …………………8分 点到直线的距离 ………………9分 ∴ ……………10分 12 用心 爱心 专心- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 坐标系 参数 方程 教案 教师版 新人 选修
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文