对数函数的图像与性质.doc
《对数函数的图像与性质.doc》由会员分享,可在线阅读,更多相关《对数函数的图像与性质.doc(4页珍藏版)》请在咨信网上搜索。
教 案 课程名称:对数函数的图像与性质 课程类型:基础课 课时:2上课日期; 9.24-9.25;10.8-10.9 一、教学内容: 对数函数的定义、图像与性质 二、教学目的: 1、知识和技能:掌握对数函数的概念,图象和性质并会简单的应用。 2、过程和方法:培养学生用数形结合的方法去解决问题,注重培养学生的观察,分析,归纳等逻辑思维能力。 3、情感态度和价值观:培养学生发现、探索、创新的精神,培养合作交流、独立思考等良好的个性品质。 三、教学重点和难点: 对数函数定义,图象和性质的发现过程,培养数形结合的思想。 四、主要参考资料: 《数学(上册)基础模块》《数学教学参考书》《学生学习指导用书》 五、教学进程: 首先分小组讨论细胞分裂情况,四人一组,用自己的形式表示出来分裂5次的情况(树状图),学生得到结果后请学生回答. 得到个数y是分裂次数x的函数,解析式是y=2x.形式上是指数函数。 思考:在这个问题中,细胞分裂的次数x是不是细胞分裂个数y的函数?若是,这个函数的解析式是什么? 答:x也是y的函数,由对数的定义得到这个新函数是x=log2y.其中,细胞的个数y是自变量,细胞分裂的次数x是函数, 这里的自变量所用字母是y,以前学习的函数的自变量常用字母x,即这里的用法不合习惯,x与y交换位置。 第二引入到新课对数函数的定义:(指数函数引出对数函数) 一般地,把函数 y=loga x (a>0且a≠1) 叫对数函数,其中x是自变量,函数的定义域为(0,+∞) ,值域是(-∞,+∞)。 提出以下问题让学生思考,四人一组讨论回答问题: (1) 为什么规定 a>0且 a≠1? (2) 为什么对数函数的定义域是(0,+∞), 值域是(-∞,+∞)? (同学:因为它跟指数函数差不多;因为···) 老师:没错,其实对数函数和指数函数是一家,只不过一个是哥哥一个是弟弟,它们是两兄弟,只是它爸妈为了区分它们给他们买了两件不同样式的衣服而已··· 第三巩固定义讲解例题1P116(强调格式)。 第四学生练习P116 第1,2题 (每一组找代表上黑板做,让学生回答做法,用抢答的形式,特别强调格式) 第五在指数函数的图像基础知识上,让学生四人一组作函数(强调画图步骤) 做出函数y=log2 x与y=log0.5x的图象 (1) 列表(略) (2) 描点(略) (3) 连线(略) 做完后让学生思考以下问题: (1) 在画图的时候应该注意哪些? (2) 观察每组做的图你们发现了什么? (每组学生通过作图过程讨论总结答案,派代表发言,老师总结) 描点之前我们要建立直角坐标系,描点后请同学们用平滑的曲线将点连起来 对数函数的图象特征: (1) 图象在y轴的右侧; (2) 图象向上无限延伸,向下无限延伸; (3) 图象都经过点(1,0); (4) a=2时,从左向右看图象逐渐上升,a=1/2 时,从左向右看图象逐渐下降。 结合图形,总结对数函数的性质:P118(略),(给学生3分钟记住知识) 第六讲解例题2、3 P118(强调格式及知识点) 学生练习:P119 练习题第1、2题 ( 将学生分成两组做,各派代表做并讲解做题方法和思路。) 第七小结内容: 通过本节课的学习你知道了什么?你学会了什么? (让学生讨论后起来回答,老师加以总结) (1).对数函数的定义 (2).对数函数的图象与性质 六、课外作业、预习导案、复习等: 第1节:P120第2题 学生自己探索对数函数的性质 第2节:P120第4题 学生制作表格比对对数函数与指数函数的图像与性质- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 对数 函数 图像 性质
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文