类康托序列的k-Abelian复杂度.pdf
《类康托序列的k-Abelian复杂度.pdf》由会员分享,可在线阅读,更多相关《类康托序列的k-Abelian复杂度.pdf(9页珍藏版)》请在咨信网上搜索。
1、应用数学MATHEMATICA APPLICATA2023,36(4):1100-1108On the k-Abelian Complexity of theCantor-like SequenceLV Xiaotao(吕小涛)(College of Science,Huazhong Agricultural University,Wuhan 430070,China)Abstract:In this paper,we study the k-abelian complexity P(k)c(n)of the Cantor-likesequence c,which is defined as
2、the fixed point of the morphism :1 7 10l1,0 7 0l+2beginning with 1 for every integer l 2.We show that for every integer k with 1 k l,two factors u and v of the Cantor-like sequence which share the same prefix and suffixof length k are(k+1)-abelian equivalent if and only if they are k-abelian equival
3、ent.Moreover,we show that the abelian complexity function and 2-abelian complexity functionof the Cantor-like sequence are both(l+2)-regular.Key words:Cantor-like sequence;k-abelian equivalence;k-abelian complexity;b-regularsequenceCLC Number:O157AMS(2010)Subject Classification:11B85;68R15Document c
4、ode:AArticle ID:1001-9847(2023)04-1100-091.IntroductionThe notion of k-abelian equivalence,originally introduced in 8,has attracted a lot ofinterest recently5,1012,16.It is an equivalence relation which is a natural extension of theusual abelian equivalence and allows an infinite approximation of th
5、e equality of words.Thek-abelian equivalence relation has been widely studied in the following directions:analyzingthe fluctuation of the k-abelian complexity of infinite words45,estimating the number ofk-abelian equivalence classes,that is,k-abelian complexity9,11,avoiding k-abelian powers16and so
6、on.We continue the research of estimating the number of k-abelian equivalence classes.Our starting point is reducing(k+1)-abelian equivalence to k-abelian equivalence.Before giving the definition of the k-abelian complexity,we need some basic notation.Given a finite non-empty set A called alphabet,w
7、e denote by A,ANand Anthe set offinite words,the set of infinite words and the set of words of length n over the alphabet Arespectively.Given a finite word u=u1u2un Anwith n 1,we denote the length of uby|u|.The empty word will be denoted by and we set|=0.For two words u,v A,theword v is said to be a
8、 factor of u,written by v u,if there exist x,y Asuch that u=xvy.Moreover,the factor v is called a prefix(resp.suffix)of u if x(resp.y)is the empty word.For a word u=u0u1un1 An,the prefix and suffix of length l(1 l n)are defined asprefl(u):=u0u1ul1and suffl(u):=unlun1;Received date:2023-02-10Foundati
9、on item:Supported by the National Natural Science Foundation of China(11801203)Biography:LV Xiaotao,male,Han,Henan,lecturer,major in complexity theoryNo.4LV Xiaotao:On the k-Abelian Complexity of the Cantor-like Sequence1101while for l 0,we define prefl(u)=and suffl(u)=.The number of occurrences of
10、a wordv in u is denoted by|u|v.Now we give the definitions of the k-abelian equivalence and thek-abelian complexity.Definition 1.1 Let k be a positive integer.Two words u,v Aare said to be k-abelianequivalent,written u kv,if the following conditions hold:1)|u|w=|v|wfor every w Ak,2)prefmink1,|u|(u)=
11、prefmink1,|v|(v)and suffmink1,|u|(u)=suffmink1,|v|(v).It is easy to check that k-abelian equivalence is indeed an equivalence relation.Definition 1.2The k-abelian complexity of an infinite word is the function P(k):N N and for every n 1,P(k)(n)is assigned to be the number of k-abelian equivalencecla
12、sses of factors of of length n.Precisely,for every positive integer n,P(k)(n)=Card(F(n)/k),where F(n)is the set of all factors of length n occurring in.The 1-abelian complexity ofan infinite word is also known as its abelian complexity.The abelian complexity functions of some notable sequences,such
13、as the Thue-Morsesequence and the Rudin-Shapiro sequence,are studied in 17 and 14,respectively.Thereare also many other works devoted to this subject(see 3).This paper is devoted to the study of k-abelian complexity of the Cantor-like sequencec:=c0c1c2=10l10l(l+2)10l1which satisfies c0=1 and for eve
14、ry n 0,1 i lc(l+2)n=c(l+2)n+l+1=cnand c(l+2)n+i=0,(1.1)where l 2 is an integer.The Cantor-like sequence c is also the fixed point of the morphism:1 7 10l1,0 7 0l+2beginning with 1,i.e.,c=(1).Our first result states that for every integer k with 1 k l,the(k+1)-abelianequivalence of any two factors of
15、 the Cantor-like sequence c can be reduced to the k-abelianequivalence of such factors under certain conditions.In detail,we prove the following theorem.Theorem 1.1Let k be a positive integer with 1 k l and let u,v be two factorsof c satisfying|u|=|v|.If prefk(u)=prefk(v)and suffk(u)=suffk(v),then u
16、 k+1v if andonly if u kv.To state our next result,we shall recall the definitions of b-automatic and b-regularsequences.For more details,see 1 and the references therein.Definition 1.3Let b 2 be an integer.The b-kernel of an infinite sequence w=(w(n)n0is the set of subsequencesKb(w):=(w(ben+c)n0|e 0
17、,0 c be.The sequence w is called a b-automatic sequence if Kb(w)is finite.The sequence w is saidto be b-regular if the Z-module generated by its b-kernel is finitely generated.By using Theorem 1.1,we are able to study the k-abelian complexity of c for every2 k l+1.Here we are just concerned with the
18、 2-abelian complexity of c,the methodused in computing k-abelian complexity(3 k l+1)is similar.Actually we obtain thefollowing result.Theorem 1.2The 2-abelian complexity function of the Cantor-like sequence is(l+2)-regular.1102MATHEMATICA APPLICATA2023Karhum aki,Saarela,and Zamboni11investigated the
19、 k-abelian complexity of Sturmianwords and gave an characterization of ultimately periodic sequences by means of k-abeliancomplexity.They also studied the k-abelian complexity of the Thue-Morse sequence,whichis a 2-automatic sequence.Greinecker7and Parreau et al.15proved independently that the2-abel
20、ian complexity of the Thue-Morse sequence is 2-regular.Our result(Theorem 1.2)givesanother example whose 2-abelian complexity function is(l+2)-regular.This paper is organized as follows.In Section 2,we study the structure of left and rightspecial factors of the Cantor-like sequence and prove Theorem
21、 1.1.In Section 3,we give therecurrence relations for the abelian complexity function of the sequence c.As a consequence,the abelian complexity function of the Cantor-like sequence is(l+2)-regular.In section 4,we prove Theorem 1.2.2.The k-Abelian Equivalence of Two Factors of the Sequence cIn this s
22、ection,we reduce(k+1)-abelian equivalence of factors of the Cantor-like sequencec to k-abelian equivalence of them under certain conditions.Before stating the result,we givesome auxiliary lemmas.The first one states that the factor set Fc(n)is closed under thereversal operator.The second one charact
23、erizes the structure of the left and right specialfactors of c.Recall that a factor v of is said to be right special(resp.left special)if thereexist at least two distinct letters a,b A such that both va and vb(resp.av and bv)arefactors.Given an infinite sequence AN,let RS(n)(resp.LS(n)denote the set
24、 ofall right special(resp.left special)factors of of length n.The set of all right special factorsand left special factors of are denoted by RSand LSrespectively.Lemma 2.1For every u=u0u1un1 Fc(n)with n 1,its mirror u=un1un2u0is also a factor of the Cantor-like sequence.ProofBy the definition of the
25、 morphism,(1)=101=(1)and(0)=0+2=(0).Thus for every i 1,i(1)=i(1).For every u=u0u1un1 Fc(n),there exists an integer i 1 such that u i(1).Therefore,u=un1un2u0 i(1)=i(1),which implies u is also a factor of c.Lemma 2.2For every 1 n l,RSc(n)=LSc(n)=0n.For every i 0 and l(l+2)i n l(l+2)i+1,RSc(n)=0n,suffn
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 类康托 序列 Abelian 复杂度
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。