几类新的有限域上的n-cycle置换.pdf
《几类新的有限域上的n-cycle置换.pdf》由会员分享,可在线阅读,更多相关《几类新的有限域上的n-cycle置换.pdf(16页珍藏版)》请在咨信网上搜索。
1、第 43 卷第 2 期2023 年 6 月数学理论与应用MATHEMATICAL THEORY AND APPLICATIONSVol.43No.2Jun.2023Some New Classes ofncycle Permutations over Finite FieldsZhang ZhilinYuan Pingzhi*(School of Mathematical Science,South China Normal University,Guangzhou 510640,China)AbstractThis paper presents some new classes of ncy
2、cle permutations over finite fields.At first,we present aconcise criterion for Dickson polynomials over finite fields being ncycle permutations.Then,we give a necessaryand sufficient condition for linearized polynomials over finite fields being involutions.Finally,some interesting newclasses of ncyc
3、le permutations are demonstrated by considering polynomials of different forms.Key wordsncycle permutationPermutation polynomialLinear translatorDickson polynomialLinearizedpolynomialFinite fieldPiecewise function几类新的有限域上的ncycle 置换张志林袁平之*(华南师范大学数学科学学院,广州,510640)摘要本文给出几类新的有限域上的 ncycle 置换.首先,我们给出一个判断
4、Dickson 多项式是否为ncycle 置换的方法.其次,我们给出一个线性多项式是否为对合的充要条件.最后,我们给出几类新的不同型的 ncycle 置换.关键词ncycle 置换置换多项式线性译码Dickson 多项式线性多项式有限域分段函数doi:10.3969/j.issn.10068074.2023.02.0031IntroductionLet p be a prime number and q be a power of p.Let Fqbe the finite field of order q and let Fqx be theset of polynomials with c
5、oefficients in Fq.A polynomial f(x)Fqx is called a permutation polynomialon Fqif it induces a permutation of Fq.The first systematic treatment of permutation polynomials is due to Hermite 11 for a finite primefield and later to Dickson 7 for a general finite field.Permutation polynomials over finite
6、 fields havebeen an interesting subject of study for many years,and have applications in coding theory 19,29,cryptography 15,16,20,21,26,28,combinatorial designs 8,and other areas of mathematics andengineering.An important problem of this topic is to find more new classes of permutation polynomials.
7、This work is supported by National Natural Science Foundation of China(Nos.12001204,12171163)Corresponding author:Yuan Pingzhi(1966 ),Associate Professor,PhD Email:收稿日期:2022 年 11 月 2 日几类新的有限域上的 ncycle 置换33In general,it is not easy to do this.Information about permutation polynomials over finite fiel
8、ds can befound in 10,12,13,22,23,24,31,36.In 6,the authors gave the definition of ncycle permutations over finite fields as follows.Definition 1.1Let f f(x)denote the operation of composition f?f(x)?.A permutationpolynomial f(x)Fqx is called an ncycle permutation if it satisfiesfn(x)=f f f|zn times(
9、x)x(mod xq x).When n=2,3 or 4,f(x)is called an involution,a triplecycle permutation or a quadruplecyclepermutation respectively.In the following,we present an interesting example to illustrate the ncycle permutations.Example 1.1Let F24=F2,where is a root of the irreducible polynomial 1+x+x4 F2x.Then
10、 the polynomial h(x)=x4+x7+x13is a quadruplecycle permutation on F24.Moreover,the cycledecomposition of h(x)is given by(0)(1)(5)(10)(842)(3141211)(61397).Recently,Chen,Wang and Zhu 6 gave a systematic treatment of ncycle permutations over finitefields and presented some new classes of ncycle permuta
11、tions with the form xrh(xs).This paper is firstmotivated by the following problem which is proposed in 6,Conclusions.Problem 1.1It is interesting to use the methods in this paper to obtain more ncycle permutationsof other forms in the future.The rest of this paper is organized as follows.In Section
12、2,we present a concise criterion for Dicksonpolynomials over finite fields being ncycle permutations.In Section 3,we give a necessary and sufficientcondition for linearized polynomials over finite fields being involutions.Finally,some interesting newclasses of ncycle permutations over finite fields
13、are also demonstrated.2nCycle permutations of the Dickson polynomialsThe class of polynomials of the formxk+kk12Xi=1(k i 1)(k 2i+1)i!aixk2iover finite fields,where k is odd,is originated from the work of Dickson when he was studying atthe University of Chicago.As you know,he almost proved that(k,q2
14、1)=1 is a necessary andsufficientconditionforthesepolynomials beingpermutationpolynomialsoverFq.Sincethen,thisclassofpolynomials and its relevant generalizations caused many scholars attention and the study of it continueduntil this day.34数学理论与应用These polynomials are related to the classical Chebysh
15、ev polynomials and they are important inconnection with a Schurs celebrated conjecture 27.Due to the importance of these polynomials,they were named Dickson polynomials by Schur in recognition of Dicksons outstanding contributions.Especially,in recent decades,this class of Dickson polynomials has be
16、en extensively investigated underdifferent contexts.A tremendous amount of results of this class of polynomials showed that it forms animportant class of permutation polynomials,which is referred as the Dickson permutational polynomials.For more details,such as the work on the class of Dickson polyn
17、omials and its development,see,forinstance,Lidl and Niederreiter 24,Charpter 7 or Lidl,Mullen and Turnwald 25.In terms of ncycle permutations,we deal with Dickson polynomials over finite fields Fqin thissection.Definition 2.1Let k2 denote the largest integer less than or equal tok2.The Dickson polyn
18、omialof degree k in indeterminate x and with parameter a Fqis defined byDk(x,a)=k2Xi=0kk i?k ii?(a)ixk2i,where k 2.An easy way of generating Dickson polynomials is via recurrence relations.Lemma 2.1(25)The Dickson polynomials Dk(x,a)satisfy the second order recurrence relationsDk+2(x,a)=xDk+1(x,a)aD
19、k(x,a)for k 0 with initial valuesD0(x,a)=2 and D1(x,a)=x.The following useful results about Dickson polynomials appeared in 25 are wellknown.Lemma 2.2(25)The Dickson polynomials Dk(x,a)satisfy:(i)deg?Dk(x,a)?=k,(ii)Dk(x,a)=Dk?D(x,a),a?,(iii)Dk(x+ax,a)=xk+akxk,for all x,and any integer k,1.Lemma 2.3(
20、25)Let a Fq.Then Dk(x,a)is a permutation polynomial on Fqif and only if(k,q2 1)=1.For a Fq,let P(a)denote the set of all Dickson polynomials Dk(x,a)which are permutationpolynomials of Fqso thatP(a)=?Dk(x,a)|(k,q2 1)=1?.几类新的有限域上的 ncycle 置换35Lemma 2.4(25)P(a)is closed under composition of polynomials
21、if and only if a 1,1.In this section,we always assume that P(a)is closed under composition of polynomials.It shouldbe noted that the proofs of Theorem 2.1 and Corollary 2.1 use some essential ideas of 4,Theorem 2,Corollary 1 and 25,Charpters 2,3.Theorem 2.1Let k be a nonzero integer.ThenDk(x,a)D1(x,
22、a)(mod xq x)if and only if one of the following holds.(i)If a=1,then k 1(mod q+1)or k 1(mod q+1)and k 1(mod q 1)or k 1(mod q 1).(ii)If a=1,then k 1(mod q+1)or k 1(mod 2(q+1)and 2k 2(mod q 1)ork 1(mod q 1).Proof Let x Fq.Then x can be written as x=+awith Fq2,where Fq2is the degree 2extension of Fq.Su
23、ppose that Dk(x,a)D1(x,a)(mod xq x).Clearly,by Lemma 2.2(iii),we haveDk(x,a)=k+akk=D1(x,a)=+a.(2.1)Since +a Fq,(+a)q=+ayieldsq+1(q1 1)=a(q1 aq1).(i)If a=1,then q+1=1 or q1=1.(ii)If a=1,then q+1=1 or q1=1.In the following,we present a detailed discussion of these two cases.Let be a primitive element
24、ofFq2.Case(i)Suppose that a=1.Let 0 d such that 0+10 Fqand let 1 Fq2such that01=1,where d=q 1 or q+1.Then 1 d and 0+10=1+11 Fq.Since Fq2=,q+1=1 or q1=1 implies that q1 or q+1 respectively.First,assume that q is even.Now 1+1=0 yields =1.Then,by?+1 Fq|q1?q2,?+1 Fq|q+1?q 22and|Fq|=q 1,we get that there
25、 exists Fq2such that =q1or q+1.36数学理论与应用Second,assume that q is odd.First of all,we assert that?q1 q+1?=2.Indeed,let s,t be two integers such that s(q1)=t(q+1),where 0 s q and 0 t q 2.Thens(q1)=t(q+1)yields q(ts)+(t+s)=1.So q(t s)+(t+s)=0.This implies that t=s=0 ors=t+1=q+12.When s=t+1=q+12,the inve
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 几类新 有限 cycle 置换
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。