2022-2023学年天津市河西区高一上数学期末学业质量监测试题含解析.doc
《2022-2023学年天津市河西区高一上数学期末学业质量监测试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年天津市河西区高一上数学期末学业质量监测试题含解析.doc(14页珍藏版)》请在咨信网上搜索。
2022-2023学年高一上数学期末模拟试卷 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.) 1.若集合,则( ) A. B. C. D. 2.在中,满足,则这个三角形是() A.正三角形 B.等腰三角形 C.锐角三角形 D.钝角三角形 3.方程的解所在的区间是 A. B. C. D. 4.函数与的图象( ) A.关于轴对称 B.关于轴对称 C.关于原点对称 D.关于直线轴对称 5.函数的图象可能是 A. B. C. D. 6.函数f(x)=的定义域为 A.[1,3)∪(3,+∞) B.(1,+∞) C.[1,2) D.[1,+∞) 7.如图,在下列四个正方体中,、为正方体两个顶点,、、为所在棱的中点,则在这四个正方体中,直线与平面 不平行的是( ) A. B. C. D. 8.函数的值域为( ) A.(0,+∞) B.(-∞,1) C.(1,+∞) D.(0,1) 9.已知水平放置的四边形按斜二测画法得到如图所示的直观图,其中,,,,则原四边形的面积为() A. B. C. D. 10.下列函数为奇函数的是 A. B. C. D. 二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上) 11.已知正三棱柱的所有顶点都在球的球面上,且该正三棱柱的底面边长为2,高为,则球的表面积为________ 12.____ 13.已知一个扇形的面积为,半径为,则其圆心角为___________. 14.已知幂函数的图象过点,且,则a的取值范围是______ 15.等比数列中,,则___________ 三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.) 16.已知函数 (1)求函数的定义域,并判断函数的奇偶性; (2)对于,不等式恒成立,求实数的取值范围 17.设全集,集合,, (1)当时,求; (2)若,求实数的取值范围. 18.如图,在棱长为1正方体中: (1)求异面直线与所成的角的大小; (2)求三棱锥体积 19.直线过点,且倾斜角为. (1)求直线的方程; (2)求直线与坐标轴所围成的三角形面积. 20.已知函数,. (1)若函数的值域为R,求实数m的取值范围; (2)若函数是函数的反函数,当时,函数的最小值为,求实数m的值; (3)用表示m,n中的最大值,设函数,有2个零点,求实数m的范围. 21.已知函数的最小值为0 (1)求a的值: (2)若在区间上的最大值为4,求m的最小值 参考答案 一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.) 1、B 【解析】集合、与集合之间的关系用或,元素0与集合之间的关系用或,ACD选项都使用错误。 【详解】, 只有B选项的表示方法是正确的, 故选:B。 【点睛】本题考查了元素与集合、集合与集合之间的关系的表示方法,注意集合与集合之间的关系是子集(包含于),元素与集合之间的关系是属于或不属于。本题属于基础题。 2、C 【解析】由可知与符号相同,且均为正,则,即,即可判断选项 【详解】由题,因为,所以与符号相同, 由于在中,与不可能均为负,所以,, 又因为, 所以,即,所以, 所以三角形是锐角三角形 故选:C 【点睛】本题考查判断三角形的形状,考查三角函数值的符号 3、C 【解析】根据零点存在性定理判定即可. 【详解】设,, 根据零点存在性定理可知方程的解所在的区间是. 故选:C 【点睛】本题主要考查了根据零点存在性定理判断零点所在的区间,属于基础题. 4、D 【解析】函数与互为反函数,然后可得答案. 【详解】函数与互为反函数,它们的图象关于直线轴对称 故选:D 5、C 【解析】函数即为对数函数,图象类似的图象, 位于轴的右侧,恒过, 故选: 6、D 【解析】由根式内部的代数式大于等于0,分式的分母不为0两类不等式组求解 【详解】要使原函数有意义,需满足,解得x≥1. ∴函数f(x)=的定义域为[1,+∞) 故选D. 【点睛】本题考查函数的定义域及其求法,解题的关键是是根式内部的代数式大于等于0,分式的分母不为0 7、D 【解析】利用线面平行判定定理可判断A、B、C选项的正误;利用线面平行的性质定理可判断D选项的正误. 【详解】对于A选项,如下图所示,连接, 在正方体中,且,所以,四边形为平行四边形,则, 、分别为、的中点,则,, 平面,平面,平面; 对于B选项,连接,如下图所示: 在正方体中,且,所以,四边形为平行四边形,则, 、分别为、的中点,则,, 平面,平面,平面; 对于C选项,连接,如下图所示: 在正方体中,且,所以,四边形为平行四边形,则, 、分别为、中点,则,, 平面,平面,平面; 对于D选项,如下图所示,连接交于点,连接,连接交于点, 若平面,平面,平面平面,则, 则, 由于四边形为正方形,对角线交于点,则为的中点, 、分别为、的中点,则,且, 则,, 则,又,则,所以,与平面不平行; 故选:D. 【点睛】判断或证明线面平行的常用方法: (1)利用线面平行的定义,一般用反证法; (2)利用线面平行的判定定理(,,),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述; (3)利用面面平行的性质定理(,). 8、D 【解析】将函数解析式变形为,再根据指数函数的值域可得结果. 【详解】, 因为,所以,所以, 所以函数的值域为. 故选:D 9、B 【解析】根据直观图画出原图,可得原图形为直角梯形,计算该直角梯形的面积即可. 【详解】过点作,垂足为 则由已知可得四边形为矩形,为等腰直角三角形 , 根据直观图画出原图如下: 可得原图形为直角梯形,, 且, 可得原四边形的面积为 故选:B. 10、D 【解析】函数是非奇非偶函数;和是偶函数;是奇函数,故选D 考点:函数的奇偶性 二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上) 11、 【解析】首先判断正三棱柱外接球的球心,即上下底面正三角形中心连线的中点,然后构造直角三角形求半径,代入公式求解. 【详解】如图:设和分别是上下底面等边三角形的中心, 由题意可知连线的中点就是三棱柱外接球的球心,连接, 是等边三角形,且,, , 球的表面积. 故答案为: 【点睛】本题考查求几何体外接球的表面积的问题,意在考查空间想象能力和转化与化归和计算能力,属于基础题型. 12、-1 【解析】根据和差公式得到,代入化简得到答案. 【详解】 故答案为: 【点睛】本题考查了和差公式,意在考查学生的计算能力. 13、 【解析】结合扇形的面积公式即可求出圆心角的大小. 【详解】解:设圆心角为,半径为,则,由题意知,,解得, 故答案为: 14、 【解析】先求得幂函数的解析式,根据函数的奇偶性、单调性来求得的取值范围. 【详解】设, 则, 所以, 在上递增,且为奇函数, 所以. 故答案为: 15、 【解析】等比数列中,由可得.等比数列,构成以为首项,为公比的等比数列,所以 【点睛】若数列为等比数列,则构成等比数列 三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.) 16、(1)的定义域为,奇函数; (2). 【解析】(1)由求定义域,再利用奇偶性的定义判断其奇偶性; (2)将对于,不等式恒成立,利用对数函数的单调性转化为对于,不等式恒成立求解. 【小问1详解】 解:由函数, 得,即, 解得或, 所以函数的定义域为,关于原点对称, 又, 所以 奇函数; 【小问2详解】 因为对于,不等式恒成立, 所以对于,不等式恒成立, 所以对于,不等式恒成立, 所以对于,不等式恒成立, 令,则 在 上递增, 所以 , 所以. 17、 (1) (2) 【解析】(1)先求集合B补集,再根据数轴求交集(2)由数轴可得m条件,解方程组可得实数的取值范围 试题解析:(1)当时,, 所以, 故; (2)因为, 所以 解得. 18、(1)45°;(2) 【解析】(1),则异面直线与所成的角就是与所成的角,从而求得 (2)根据三棱锥的体积进行求解即可 【详解】解:(1)∵, ∴异面直线与所成的角就是与所成的角,即 故异面直线与所成的角为45° (2)三棱锥的体积 【点睛】本题主要考查了直线与平面之间的位置关系,以及几何体的体积和异面直线所成角等有关知识,考查数形结合、化归与转化的数学思想方法,空间想象能力、运算能力和推理论证能力,属于基础题 19、(1);(2). 【解析】(1)根据倾斜角得到斜率,再由点斜式,即可得出结果; (2)分别求出直线与坐标轴的交点坐标,进而可求出三角形面积. 【详解】(1)∵倾斜角为,∴斜率, ∴直线的方程为:,即; (2)由(1)得,令,则,即与轴交点为; 令,则,以及与轴交点为; 所以直线与坐标轴所围成的三角形面积为. 20、(1) (2) (3) 【解析】( 1 )函数的值域为R,可得,求解即可; ( 2)设分类论可得m的值; (3)对m分类讨论可得结论. 【小问1详解】 值域为R, ∴ 【小问2详解】 ,. 设,, ①若即时,, ②若,即时,,舍去 ③若即时,,无解,舍去 综上所示: 【小问3详解】 ①显然,当时,在无零点,舍去 ②当时,,舍去 ③时,解分别为,, 只需控制,不要均大于等于1即可 Ⅰ:,,,舍去 Ⅱ:,无解, 综上: 21、(1)2(2) 【解析】(1)根据辅助角公式化简,由正弦型函数的最值求解即可; (2)由所给自变量的范围及函数由最大值4,确定即可求解. 【小问1详解】 , , 解得. 【小问2详解】 由(1)知, 当时,, , , 解得, .- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 天津市 河西区 高一上 数学 期末 学业 质量 监测 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文