基于Lévy飞行的粒子群算法在大地电磁反演中的应用.pdf
《基于Lévy飞行的粒子群算法在大地电磁反演中的应用.pdf》由会员分享,可在线阅读,更多相关《基于Lévy飞行的粒子群算法在大地电磁反演中的应用.pdf(8页珍藏版)》请在咨信网上搜索。
1、 第 47 卷第 4 期物 探 与 化 探Vol.47,No.4 2023 年 8 月GEOPHYSICAL&GEOCHEMICAL EXPLORATION Aug.,2023doi:10.11720/wtyht.2023.1330张阳阳,杜威,王芝水,等.基于 Lvy 飞行的粒子群算法在大地电磁反演中的应用J.物探与化探,2023,47(4):986-993.http:/doi.org/10.11720/wtyht.2023.1330Zhang Y Y,Du W,Wang Z S,et al.Application of particle swarm algorithm based on L
2、vy flight in magnetotelluric inversionJ.Geophysical and Geo-chemical Exploration,2023,47(4):986-993.http:/doi.org/10.11720/wtyht.2023.1330基于 Lvy 飞行的粒子群算法在大地电磁反演中的应用张阳阳1,杜威2,王芝水1,缪旭煌1,张翔1(1.安徽省勘查技术院,安徽 合肥 230031;2.云南大学 地球科学学院,云南 昆明 650091)摘 要:粒子群优化算法在大地电磁测深反演中相较于一般的线性反演算法具有多种优点。然而标准粒子群算法在多维优化问题中存在早熟问
3、题,为此,采用基于 Lvy 飞行随机游走策略的优化粒子群算法来处理局部最优解,增加寻优能力。通过对地电模型的反演对比表明,改进后的粒子群算法相较于标准粒子群算法适应度值下降速度更快、寻优能力更好。最后将该算法应用于已知钻孔旁实测数据,结果较好,表明该算法具有较好的实用性。关键词:Lvy 飞行;大地电磁测深反演;非线性反演;粒子群优化算法;一维有限元正演中图分类号:P631 文献标识码:A 文章编号:1000-8918(2023)04-0986-08收稿日期:2022-06-30;修回日期:2022-11-17基金项目:国家自然青年科学基金项目(41904129)第一作者:张阳阳(1989-),
4、男,工程师,从事电磁法数据处理与解释工作。Email:abner361 通讯作者:杜威(1990-),女,副教授,从事地球物理数据处理与解释工作。Email:duwei 0 引言大地电磁测深法(MT)作为一种深地地质构造研究的频率域电磁测深法,其数据反演方法的选择对结果有直接影响1。目前的一维 MT 反演可大致分为线性算法与非线性算法,线性算法主要有阻尼最小二乘法、广义逆矩阵法以及 OCCAM 法等,其核心思想最终都是将非线性的问题通过线性的方法来逼近2-4,这些方法大都非常依赖初始模型,很容易陷入局部最优解。非线性算法对比线性算法而言,由于不依赖初始模型,无需求取偏导数,以及具有较强的搜索能
5、力等优点,逐渐被应用在多种地球物理方法的数据反演中。目前应用于地球物理数据反演的非线性算法主要有遗传算法(GA)5-6、模拟退火算法(SA)7-8、蚁群算法(ACO)9、粒子群算法(PSO)以及其他一些经过改良的非线性算法10-12。粒子群算法最早是由 Kennedy 以及 Eherhart 于1995 年提出13,该算法源于鸟群的群体觅食行为,鸟群的栖息地可以看作是待求问题的可能解的位置,通过鸟群中个体的信息传递,指引整个鸟群向着最优解移动。PSO 算法是基于迭代的随机优化算法,该算法初始化时生成一组随机解,通过迭代搜索最优解。粒子群算法不同于其他进化算法,不是采用群体解的竞争机制来迭代产生
6、最优解,而是通过群体解的合作机制来迭代产生最优解14。粒子群算法的机制容易实现、概念简单、参数少,并且隐含并行性。因此粒子群算法在求解多维非线性问题上有很好的前景15。国内外学者对 PSO 算法进行了一系列的研究与优化,Francesca 等16总结了 PSO算法在电磁法勘探、重磁勘探、直流电法勘探以及地震勘探等各种地球物理方法中的应用;师学明等17、肖敏18提出一种新的惯性权重 参数振荡递减策略,并将其应用于一维和简单的二维大地电磁测深反演中;韩家兴等19通过将 PSO 算法应用于测井中,有效提高了密度测井的质量;李明星等20将 PSO 算法应用于瞬变电磁反演计算中。本文通过对 PSO 算法
7、在多维问题中容易早熟的缺点进行改进,提出了一种改进的 PSO 算法(LFPSO),通过结合 Lvy 飞行,更有机会跳出局部最优解。通过模型试验表明:LFPSO 相较于标准 PSO 算法适应度值下降速度更快、寻优能力更好;相较于 OCCAM反演,LFPSO 反演效率更高;并在实际数据处理中取得了较好的结果。4 期张阳阳等:基于 Lvy 飞行的粒子群算法在大地电磁反演中的应用1 粒子群算法1.1 标准粒子群算法(PSO)PSO 算法的数学描述如下13,21:由 SN 个粒子组成的群体在 D 维的搜索空间中以一定的速度飞行,每个粒子初始速度 vi=(v1,v2,vD),初始位置xi=(x1,x2,x
8、D)。在搜索时,粒子群体记录每一个粒子到过的历史最优位置 pbest=pbest1,pbest2,pbestSN,同时记录整个群体所有到过的最优位置gbest=gbest1,gbest2,gbestSN,在此基础上寻找最优解。对每一个粒子,其第 d 维根据式(1)进行变化:vidt+1=vidt+c1rand(pbesti-xid)+c2rand(gbesti-xid),(1)xidt+1=xid+vidt+1,(2)其中:i=1,2,SN;rand 为 01 之间的随机数;为惯性权重,该参数决定了粒子先前速度对当前速度的影响程度,该值较大时,全局搜索能力较强,局部搜索能力较弱,该值较小时,则
9、局部搜索能力增强,全局搜索能力变弱,本文权重 通过式(3)线性变化,max取值 2,min取值 0.4:=max-t-tmaxmax-min。(3)随着迭代次数的增加,线性减小,从而使得粒子群算法在初期具有较强的全局收敛能力,而在后期拥有较强的局部搜索能力14。由式(1)可知,粒子的速度更新公式包含 3 部分:第一部分为惯性部分,即对粒子先前速度的记忆;第二部分为自我认知部分,即粒子 i 在当前位置与自己到过的最好位置之间的距离;第三部分为社会经验部分,该部分表示粒子之间的信息共享,即粒子 i 当前位置与群体已知的最好位置之间的距离。1.2 基于 Lvy 飞行的粒子群优化算法(LYPSO)标准
10、的粒子群算法在处理多维非线性问题时,仍然存在早熟情况,随着迭代次数的增加,各个粒子会变得越来越相似,最终可能进入局部最优解。避免早熟问题,目前主要通过以下 3 种方法14:修改惯性权重参数的值;增加种群多样性;结合其他一些进化算法提高算法的性能。为了达到增加种群多样性的目的,本文采用Lvy 飞行策略,扰动陷入局部极值的全局最优粒子,使得粒子有更大的几率脱逃局部最优解。Lvy 飞行是服从 Lvy 分布的随机搜索方法,其来源于混沌理论相关的数学,是一种短距离搜索与偶尔长距离的行走相结合的行走方式,其特点是长时间以较小的步长随机游走,偶尔以较大的步长进行突变跳跃,飞行示意图如图 1 所示。本文通过L
11、vy 飞行随机游走策略更新种群搜索个体的位置,提高种群多样性。本文采用 Mantegna 于 1994 年提出的 Mantegna方法来模拟 Lvy 飞行22。生成服从 Lvy 飞行的随机步长的方法如式(4):S=|v|1,(4)其 中:=N(0,2),v=N(0,1),=(1+)sin(/2)(1+)/22(-1)/21/,取 1.5。每次迭代时,将当前群体最优解 gbest 进行多次 Lvy 扰动,如式(5)所示,选取适应度值最好的值作为 gbestLvy,再与gbest 进行对比,选择适应度较好的 gbest 作为群体最优解,算法流程图如图 2 所示。gbestLvy=gbest+L,(
12、5)式中:L 表示Lvy 随机搜索路径;表示步长的控制量。aLvy 飞行轨迹;bLvy 飞行步长分布aLevy flight path;bLevy flight step distribution图 1 迭代 200 次的 Lvy 飞行示意Fig.1 Schematic diagram of the Lvy flight trajectory after 200 iterations789物 探 与 化 探47 卷 图 2 LFPSO 算法流程Fig.2 LFPSO algorithm flow chart2 数值正、反演计算及实际数据处理正演是反演的基础,求解电磁场分布规律的方法主要有解析法
13、与数值模拟法1;解析法运算速度快,但是仅对较为简单的规则形体的地质模型有效,对于多层地电模型而言,有限差分法与有限元法是较为有效的正演方法。本文中 2 层、3 层模型正演采用数值解析法1。多层地电模型以及实测数据采用可变步长的一维有限元数值模拟法来进行数据正演。评价解(粒子)的优劣程度的适应度函数使用式(6)f(cal)=Ni=1(lg cali-lg obsi)2N。(6)式中:N 表示实测数据频率个数;cal表示由地电模型正演响应;obs表示实测视电阻率值。2.1 有限元数据正演图 3 可变步长有限元法单元节点示意Fig.3 Schematic diagram of variable st
14、ep FEM element nodes 线性有限元法(FEM)由麦克斯韦方程组推导而出。节点示意图如图 3 所示,TM 模式下,电场满足的微分方程:-Hyz=1Ex,Exz=iHy,2Hyz2-k2Hy=0,2Exz2-k2Ex=0。(7)由边界条件建立式(8):2Exz2+iEx=0,Ex|z=0=1,Ex|z=N=-kEx。(8)式中:为角频率;为电阻率;为空气中磁导率;k为传播常数;z 表示深度;N 表示最地层的底层深度。由式(8)可得残差 Rei:r=2Exz2+iEx=0,Rei=xe1xe2Neirdx=0,(i=1,2)。(9)其中:xe1,xe2为单元的节点坐标。解方程式(9
15、),得到单元方程(10),最终将所有单元方程组合,求解得到各个节点的电场值 Ex以及阻抗 Z。Rei=2j=1Eexixe2xe1(dNeidxdNejdx+bNeiNej)dx-kEx|z=N=0b=iNe1(x)=xe2-xxe2-xe1Ne2(x)=x-xe1xe2-xe1Eex(x)=2j=1Nej(x)Eexj(10)Hy=1idExdz,(11)Z=ExHy,(12)a=|Z|2,(13)889 4 期张阳阳等:基于 Lvy 飞行的粒子群算法在大地电磁反演中的应用=tan-1Im(Z)Re(Z),(14)然后根据式(11)求得 Z=0 时的辅助场 Hy,最终通过式(12)(14)得
16、到波阻抗、视电阻率以及阻抗相位。有限元法采用传统的固定网格计算时,在高、低频段拟合误差都较大,而且采用的网格是随地层层数增加而对数等间隔变大的变步长网格,对于频率域电磁法而言更为符合实际情况,本文地层厚度递增公式如式(15)。zm=z0 m。(15)式中:zm表示第 m 层网格厚度,为一常数,表示网格厚度递增参数。本文所使用的有限元正演程序由 python 编写。图 4 为地电模型参数 h=200,800,500的解析解与有限元正演对比曲线,曲线结果验证了编写的有限元 正 演 程 序 是 正 确 的;正 演 网 格 深 度 要 求2 600 m,固定步长有限元网格厚度 10 m,则需要网格数
17、260 层,可变步长有限元首层厚度 1 m,网格厚度递增参数 1.05,网格数只需要 100 层即可到达要求的正演深度,可见可变步长有限元正演在提高正演效率的同时,精度也更高。a视电阻率结果对比;b阻抗相位结果对比acomparison of apparent resistivity;bcomparison of impedance phase图 4 固定步长和可变步长的有限元正演在简单地电模型(G 型)中的正演结果对比Fig.4 Comparison of forward results of finite element forward modeling with fixed step s
18、ize and variable step in simple geoelectric model(G type)2.2 两层、三层理论模型反演为了对 LFPSO 与 PSO 的反演效果进行对比分析,选择两层 G 型、D 型地电模型和三层地电模型 K型、H 型地电模型进行反演,反演迭代 100 次,正演采用解析解法,曲线拟合结果见图 5、图 6,反演模型参数以及结果见表 1。aG 型曲线对比;bD 型曲线对比;cG 型曲线适应度迭代变化;dD 型曲线适应度迭代变化aG-curve comparison chart;bD-curve comparison chart;cthe fitness v
19、alue of G-curve changes iterativel;dthe fitness value of D-curve changes ite-rativel图 5 2 层地电模型 PSO、LFPSO 反演结果与理论值对比Fig.5 Comparison of PSO and LFPSO inversion results and theoretical values of the two-layer geoelectric model989物 探 与 化 探47 卷 aH 型曲线对比;bK 型曲线对比;cH 型曲线适应度迭代变化;dK 型曲线适应度迭代变化aH-curve comp
20、arison chart;bK-curve comparison chart;cthe fitness value of H-curve changes iterativel;dthe fitness value of K-curve changes it-erativel图 6 3 层地电模型 PSO、LFPSO 反演结果与理论值对比Fig.6 Comparison of PSO and LFPSO inversion results and theoretical values of the three-layer geoelectric model表 1 4 种不同地电模型 PSO、LF
21、PSO 算法反演结果Table 1 Inversion results of four different geoelectric models PSO and LFPSO algorithms模型类型模型参数搜索空间模型值PSO 地电模型LFPSO 地电模型反演结果相对误差/%反演结果相对误差/%H 模型K 模型D 模型G 模型1/(m)2/(m)3/(m)h1/mh2/m1/(m)2/(m)3/(m)h1/mh2/m1/(m)2/(m)h1/m1/(m)2/(m)h1/m10010003003082.7287.54.2100124.124.1109.19.1900578.735.77741
22、4.050026447.2526.75.31000881.111.9855.314.52001971.51962.0800900.212.5861.57.7300312.14.0309.13.0500412.717.5517.53.51000261.773.8961.13.9900909.11.0903.10.3200213.36.7213.56.810009039.7937.66.2200196.51.8198.20.9900843.26.3943.54.81000865.113.5970.13.0平均误差16.86%5.58%由图 5、图 6 可以看出,在迭代 100 次后,地电模型解析解
23、与 PSO、LFPSO 反演曲线形态均较为相似;LFPSO 在初始值相较 PSO 差的情况下,仍然可以更快地找到适应度更好的解,由表 1 可知,PSO 在4 种 地 电 模 型 中 反 演 结 果 的 平 均 相 对 误 差 为16.86%,LFPSO 的平均相对误差仅为 5.58%,说明无论是曲线拟合程度还是适应度值下降速度,LFP-SO 算法均优于 PSO 算法。2.3 多层复杂地电模型为验证 LFPSO 算法的实用性和有效性,本文选择 OCCAM 反演与 LFPSO 算法进行对比验证。OC-CAM 反演作为一种线性算法,其实质即是求一个多层地球模型的最光滑解23。由于其稳定的收敛性、不依
24、赖初值等优点,在 MT 一维、二维反演中具有良好的效果。表 2 6 层薄互层地电模型参数Table 2 Parameters of six-layer thin-thick interlayer geoelectric model模型参数层号123456s/(m)1001000101000101000地层厚度/m10010050400150099 4 期张阳阳等:基于 Lvy 飞行的粒子群算法在大地电磁反演中的应用 多层复杂地层模型选择一个 6 层薄互层的地电模型24-25进行数据反演。正演采用可变步长有限元法,地层网格剖分采用对数等间隔剖分:地层层数50 层,首层层厚 5 m,网格厚度递增参
25、数 1.05,网格深度最深 1 046 m。频率范围 10410-4。地电模型参数如表 2 所示。由于 LFPSO 在搜索空间内会出现高频跳点,而地层电性数据在实际中是连续且光滑的,因此需要对产生的电性数据进行滤波,去除随机产生的不合实际的构造,以便于符合实际地层数据。本文使用SAVITZKY-GOLAY 对反演结果进行滤波,SAVITZKY-GOLAY 滤波是一种数字滤波器,通过线性最小二乘图 7 Savitzky-Golay 滤波器的滤波效果Fig.7 The filtering effect of the filter Savitzky-Golaya六层薄互层有限元正演电阻率、相位曲线;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 vy 飞行 粒子 算法 大地 电磁 反演 中的 应用
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。