直角三角形.docx
《直角三角形.docx》由会员分享,可在线阅读,更多相关《直角三角形.docx(6页珍藏版)》请在咨信网上搜索。
一,教学目标: 知识与能力:1.理解勾股定理逆定理的具体内容及勾股数的概念; 2.能根据所给三角形三边的条件判断三角形是否是直角三角形; 过程与方法:经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力; 情感态度与价值观:体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣; 二,教学重点,难点: 理解勾股定理逆定理的具体内容;勾股定理逆定理的应用 三,教具:教材、电脑、多媒体课件. 学具:教材、笔记本、课堂练习本、文具. 四、教学过程:主要有:情景引入,合作探究,反思总结,板书勾股定理的逆定理,小试牛刀,布置作业,教学反思。 第一环节:情境引入 情境:1.直角三角形中,三边长度之间满足什么样的关系? 2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢? 意图:通过情境的创设引入新课,激发学生探究热情. 效果:从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础. 第二环节:合作探究 内容1:探究 下面有三组数,分别是一个三角形的三边长a,b,c①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题: 1.这三组数都满足...吗? 2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数. 意图:通过学生的合作探究,得出“若一个三角形的三边长,满足...,则这个三角形是直角三角形”这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律. 效果:经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足,可以构成直角三角形;②7,24,25满足,可以构成直角三角形;③8,15,17满足...,可以构成直角三角形. 从上面的分组实验很容易得出如下结论: 如果一个三角形的三边长,满足...,那么这个三角形是直角三角形 内容2:说理 提问:有同学认为测量结果可能有误差,不同意这个发现.你认为这个发现正确吗?你能给出一个更有说服力的理由吗? 意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论: 如果一个三角形的三边长a,b,c,满足...,那么这个三角形是直角三角形 满足的三个正整数,称为勾股数. 注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识. 活动3:反思总结 提问: 1.同学们还能找出哪些勾股数呢? 2.今天的结论与前面学习勾股定理有哪些异同呢? 3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢? 4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢? 意图:进一步让学生认识该定理与勾股定理之间的关系 第三环节:交流小结 内容: 师生相互交流总结出: 1.今天所学内容①会利用三角形三边数量关系判断一个三角形是直角三角形;②满足的三个正整数,称为勾股数; 2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律;③利用三角形三边数量关系判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将作适当变形,便于计算. 意图: 鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识. 效果: 学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系判断一个三角形是直角三角形从古至今在实际生活中的广泛应用. 板书:勾股定理的逆定理:在一个三角形中,如果两边的平方和等于第三边的平方,那么这个三角形是直角三角形。⊿ABC 的三边长为a,b,c ,如果 a2+b2=c2,a2+c2,=b2或b2+c2,=a2,那么⊿ABC是直角三角形 . 随堂练习:(小试牛刀):内容: 1.下列哪几组数据能作为直角三角形的三边长?请说明理由。 ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22 2.一个三角形的三边长分别是15cm,20cm,25cm,则这个三角形的面积是( )A 250 cm2 B 150cm2 C 200 cm2 D 不能确定 . 3.将直角三角形的三边扩大相同的倍数后,得到的三角形是() A 直角三角形 B 锐角三角形 C 钝角三角形 D 不能确定 。 4.三角形三个内角之比为1:2:3,它的最长边为6,则最短边长是() 意图:通过练习,加强对勾股定理及勾股定理逆定理认识及应用。 第四环节:布置作业 课本习题1.3第1,2,4题 六、教学反思: 1.充分尊重教材,以勾股定理的逆向思维模式引入“如果一个三角形的三边长,满足,是否能得到这个三角形是直角三角形”的问题;充分引用教材中出现的例题和练习. 2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律. 3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算. 4.注重对学习新知理解应用偏困难的学生的进一步关注. 5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求. 由于教学容量相对较多,在教学中,应注意根据自己班级学生的状况进行适当的删减或调整. 辩误区:勾股定理逆定理的条件:(1)不能说直角三角形中,因为还没有确定直角三角形,所以不能说“斜边,直角边”,当满足a2+b2=c2时,c是斜边,:∠c是直角。(2)利用勾股定理逆定理判断一个三角形是不是直角三角形的思路:先计算最长边,算出最长边的平方及另两边的平方和,如果最长边的平方正好等于另两边的平方和,那么这个三角形是直角三角形。到目前为止,判断三角形是直角三角形的方法有:有一个是直角,有两边互相垂直,勾股定理的逆定理。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直角三角形
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文