解二元一次方程组(代入法).doc
《解二元一次方程组(代入法).doc》由会员分享,可在线阅读,更多相关《解二元一次方程组(代入法).doc(7页珍藏版)》请在咨信网上搜索。
课题:七(下)第8章第2节:《消元—解二元一次方程组》(第1课时) 授课时间: 年 月 日(周 ) 一、 教学目标: 通过 二元一次方程的《消元--解一元二次方程组(代入法)》 内容素材,确认学生学会用代入法解二元一次方程组,并体会化归思想。 二、教师主导 重点概念: 1.用一个未知数表示另一个未知数; 2.代入消元法 3.用代入消元法解二元一次方程组。 一般步骤:变形→代入→求解→回代→写解→验算 教学思路:本节课主要通过上节课“球赛问题”所列的二元一次方程组,来探讨如何解二元一次方程组,同时渗透“消元思想、 ”,并总结归纳出“代入消元法”的概念,在通过讲授课本P91例1让学生掌握二元一次方程组的解法,在通过题组练习进行巩固熟练,从而再一次对“消元思想的理解”。 教学重点:二元一次方程组的解法 教学难点:解二元一次方程组的“消元思想”的理解。 典例1:思考:如可解二元一次方程组 分 析:将新知(二元一次方程组)转化为旧知(一元一次方程)便可; 将①变形,得: 把③代入方程②,即将②中的用代替 这样就有.将“二元”化为“一元”。 总 结:这就是我们数学研究经常用到的“化未知为已知”的化归思想,将未知数的个数由多化少,逐一解决的思想,叫做消元思想。 解 答:由①,得: 把③代入②,得: 解这个方程,得: 把代入③,得: 所以这个方程组的解是 总 结:上面的解法是把二元一次方程组中一个方程的一个未知数用另一个未知数 的式子表示出来,在代入另一个方程,实现消元,进而求的这个二元一次 方程组的解,这种方法叫做代入消元法,简称代入法。 典例2:用代入法解方程组 分 析:方程①中的系数是1,用含的式子表示,比较简便。 解 答:由①,得: 把③代入②,得: 解这个方程,得: 把代入③,得: 所以这个方程组的解是 小 结:借助本题,让学生先分析解题思路,使学生再次经历代入法解二元一次方程 组的方程。 三、学生主体 题组A: 1. 把下列方程改写成用含的式子表示的形式; (1) (2) 2. 把下列方程改写成用含的式子表示的形式; (1) (2) 题组B: 1. 用代入法解下列方程组: (1) (2) 题组C: 2. 用代入法解下列方程组: (1) (2) 四、课堂管理 五、 分层作业布置 ★ 《课本》P97 习题8.2 第1题、第2题(3)(4) ★★ 《学评》P79 第2、3、4、5、6、7题 六、 教学反思 优点: 不足: 改进: 【课堂检测】 姓 名 用代入法解下列方程组: (1) (2) 【课堂检测】 姓 名 用代入法解下列方程组: (1) (2) 第8章第2节:《消元—解二元一次方程组》(第1课时) 【学习目标】 1.会用代入法解二元一次方程组; 2.初步体会解二元一次方程组的基本思想----“消元” 3.通过规范的作答收获守规矩的做事态度。 一、探索新知 思考:如何解二元一次方程组 ,那方程组呢? 典例1:如可解二元一次方程组 归纳小结: 1.将未知数的个数由多化少、逐一解决的思想,叫做 思想。 2. 由二元一次方程组中一个方程,将 用 表示出来,再代入另一个方程,实现 ,进而求的这个二元一次方程组的解,这种方法叫做 ,简称 。 二、应用新知 典例2:用代入法解方程组 三、巩固练习 题组A: 1.把下列方程改写成用含的式子表示的形式; (1) (2) 2.把下列方程改写成用含的式子表示的形式; (1) (2) 题组B: 3. 用代入法解下列方程组: (1) (2) 题组C: 4. 用代入法解下列方程组: (1) (2) 【课堂检测】 用代入法解下列方程组: (1) (2)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二元 一次 方程组 代入
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文