非奇异H-张量的新判定.pdf
《非奇异H-张量的新判定.pdf》由会员分享,可在线阅读,更多相关《非奇异H-张量的新判定.pdf(11页珍藏版)》请在咨信网上搜索。
1、Chin.Quart.J.of Math.2023,38(2):123133New Criteria for Nonsingular H-TensorsLIU Liang,WANG Ya-qiang(School of Mathematics and Information Science,Baoji University of Arts and Sciences,Baoji 721013,China)Abstract:H-tensor plays an important role in identifying positive definiteness of evenorder real
2、symmetric tensors.In this paper,some definitions and theorems related toH-tensors are introduced firstly.Secondly,some new criteria for identifying nonsingularH-tensors are proposed,moreover,a new theorem for identifying positive definitenessof even order real symmetric tensors is obtained.Finally,s
3、ome numerical examples aregiven to illustrate our results.Keywords:H-tensors;Generalized diagonally dominant;M-tensors2000 MR Subject Classification:15A39,15A69,15A57CLC number:O151.2Document code:AArticle ID:1002-0462(2023)02-0123-11DOI:10.13371/ki.chin.q.j.m.2023.02.0021.IntroductionLetC(R)be the
4、complex(real)field andN=1,2,.,n.A tensorA=(ai1i2im)Cm,nis called a complex(real)ordermdimensionntensor,ifai1i2imC(R),whereijNforj=1,2,.,m.Ifn1=n2=.nm=n,thenAis called a square tensor,otherwise it is called arectangular tensor.For a tensorA=(ai1i2im)Cm,nand vectorx=(x1,x2,.,xn)TCn,Axm1is a vectorin C
5、n,whose ith component is(Axm1)i=Xi2,.,imNaii2imxi2xim,ijN,j=2,3,.,m.A tensorI=(i1i2im)Cm,n(m,n2)is called the identity tensor,if its elements satisfyi1i2im=1,i1=i2=im,0,otherwise.Received date:2022-06-26Foundation item:This work is partly supported by the National Natural Science Foundations of Chin
6、a(GrantNo.31600299);The Natural Science Foundation of Shaanxi province(Grant No.2020JM-622).Biographies:LIU Liang(1997-),male,native of Baoji,Shaanxi,graduate student of Baoji University of Artsand Sciences,engages in numerical algebra;WANG Ya-qiang(1983-),male,native of Baoji,Shaanxi,associateprofe
7、ssor of Baoji University of Arts and Sciences,engages in numerical algebra.Corresponding author WANGYa-qiang:.123124CHINESE QUARTERLY JOURNAL OF MATHEMATICSVol.38For a realm-ordern-dimensional tensorAand a scalarC,if there exists nonzero vectorxCnsuch thatAxm1=xm1,wherexm1Cnwith(xm1)ixm1i,thenis sai
8、d to be an eigenvalue of tensorAandxan eigenvector associated with eigenvalue.In particular,xis real,thenis also real,and(;x)is said to be anH-eigenvalue pair of tensorA.The largest modulus of eigenvalue of tensorAiscalled the spectral radius of tensorAand denotes it by(A).Motivated by the character
9、isticsof nonsingular matrices and say a square tensor is nonsingular if its all eigenvalues are nonzero.An m-th degree homogeneous polynomial of n variables f(x)can be denoted asf(x)=Xi1,.,imNai1i2imxi1xi2xim,(1.1)wherexRn.The homogeneous polynomialf(x)in(1.1)can be expressed as the tensor productof
10、 a symmetric tensor A with order m dimension n and xmdefined byf(x)Axm=Xi1,.,imNai1i2imxi1xi2xim,where x=(x1,x2,.,xn)Rn.When m is even,f(x)is called positive definite iff(x)0,for any xRn,x6=0.The positive definiteness of multivariate polynomialf(x)plays an important role in thestability study of non
11、linear autonomous systems.However,it is not easy to identify the positivedefiniteness of such a multivariate form.In 2007,Professor Qi showed thatf(x)is positivedefinite if and only if the real even-order symmetric tensorAis positive definite 9.In 2014,Li et al.showed that if a real even-order symme
12、tric tensorAwith|aiii|ofor alliNis anH-tensor,thenAis positive definite 6.Therefore,for a given tensor,a interestingquestion arises as to whether it is anH-tensor or not.Many criteria for judgingH-tensorshave been widely proposed,see 15,7,8,1016.In this paper,we still focus on the problemof determin
13、ing theH-tensor,and some new criteria in identifying nonsingularH-tensors areestablished.Moreover,a new theorem for identifying positive definiteness of even order realsymmetric tensors is obtained.Throughout this paper,we will use the following definitions.Definition 1.1.6 Let tensorACm,n,its compa
14、rison tensor denoted byMA,is defined asMA=|ai1i2im|,if i1=i2=im,|ai1i2im|,otherwise.Definition 1.2.6 Let tensorACm,n,Ais said to be aZ-tensor if it can be written asA=cIB,wherec0 andBis a nonnegative tensor.Furthermore,ifc(B),thenAis saidto be an M-tensor,and if c(B),then A is said to be a nonsingul
15、ar M-tensor.No.2LIU Liang et al:New Criteria for Nonsingular H-Tensors125Definition 1.3.6 Let tensorACm,n,if comparison tensorMAof tensorAis anM-tensor,then tensorAis called anH-tensor,and if comparison tensorMAis a nonsingularM-tensor,then tensor A is called a nonsingular H-tensor.Definition 1.4.10
16、 Let ACm,n,A is called diagonally dominant if|aiii|Xi2imNii2im=0|aii2im|,iN,(1.2)and tensorAis called strictly diagonally dominant if all the inequalities hold with strict inequality.Definition 1.5.8 LetACm,n,Ais said to be generalized strictly diagonally dominant ifthere exists positive diagonal ma
17、trix D such that ADm1is strictly diagonally dominant.2.Criteria for nonsingular H-tensorsIn this section,some new criteria forH-tensors are given as follows.Before that somenotations and lemmas are given firstly.LetSbe a subset ofNandS=NS,=i2i3im:ikS,k=2,3,.,m,=i2i3im:ikS,k=2,3,.,m,based on the sets
18、 we denote thatri(A)=Xi2im6=iii2im|aii2im|,ri(A)=Xi2im6=iii2im|aii2im|,then ri(A)=ri(A)+ri(A).Obviously,whenS=N,then|aiii|ri(A)0,we obtain tensorAis aH-tensor,therefore,we always assume that S6=and S6=N.Lemma 2.1.6 TensorAis a nonsingularH-tensor if and only ifAis generalized strictlydiagonally domi
19、nant.Lemma 2.2.6 For square tensorA,if there exists a positively diagonal matrixDsuch thatADm1is a nonsingular H-tensor,then A is a nonsingular H-tensor.Lemma 2.3.6 If tensorAis irreducible and diagonally dominant with at least one strictinequality holding in(1.2),then it is generalized diagonally d
20、ominant.Lemma 2.4.12 LetACm,nbe an even order real symmetric tensor,andaiii0 for alliN,if A is an H-tensor,then A is positive definite.Theorem 2.1.For tensorA=(ai1i2im)Cm,n,if there exists a partition(S;S)of the indexset N such that|appp|rp(A)0,pS,(2.1)|aqqq|rq(A)0,qS,(2.2)126CHINESE QUARTERLY JOURN
21、AL OF MATHEMATICSVol.38(|appp|rp(A)(|aqqq|rq(A)1(rp(A)(rq(A)1,and if 0,12,then A is a nonsingular H-tensor.Proof.From(|appp|rp(A)(|aqqq|rq(A)1(rp(A)(rq(A)1,then(|appp|rp(A)rp(A)(rq(A)|aqqq|rq(A)1.From the inequality(2.1),we obtain|appp|rp(A)rp(A)1.If 0,12 holds,then(|appp|rp(A)rp(A)1(|appp|rp(A)rp(A
22、)(rq(A)|aqqq|rq(A)1,so|appp|rp(A)rp(A)rq(A)|aqqq|rq(A).Hence the paper defines the following positive diagonal matrixD=diag(d1,dn)withdiagonal entriesdi=1,if iS,d,if iS,where d1 is such that|appp|rp(A)rp(A)dm1,pS,dm1rq(A)|aqqq|rq(A),qS.Let maxpS(|appp|rp(A)rp(A)=P,minqS(rq(A)|aqqq|rq(A)=Q,thenQdm10,
23、thenrp(B)=rp(B)+rp(B)rp(A)+dm1rp(A)rp(A)+|appp|rp(A)rp(A)rp(A)=|appp|=|bppp|.If rp(A)=0,then from the inequality(2.1),rp(B)=rp(B)+rp(B)rp(A)+dm1rp(A)=rp(A)rq(A)|aqqq|rq(A)(|aqqq|rp(A)rq(A)=0.This means that tensorADm1is strictly diagonally dominant,andAis generalized strictlydiagonally dominant,henc
24、e it is a nonsingular H-tensor by Lemma 2.1.Theorem 2.2.For irreducible tensorA=(ai1i2im)Cm,n,if there exists a partition(S;S)of the index set N such that|appp|rp(A)0,pS,(2.3)|aqqq|rq(A)0,qS,(2.4)(|appp|rp(A)(|aqqq|rq(A)1(rp(A)(rq(A)1,(2.5)in addition,the strict inequality holds for at least onep0Sa
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 奇异 张量 判定
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。