直线和圆.doc
《直线和圆.doc》由会员分享,可在线阅读,更多相关《直线和圆.doc(26页珍藏版)》请在咨信网上搜索。
直线和圆有三种位置关系,具体如下: (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, (3)相离:直线和圆没有公共点时,叫做直线和圆相离。 如果⊙O的半径为r,圆心O到直线l的距离为d,那么: dÛ直线l与⊙O相交<r; d=r;Û直线l与⊙O相切 dÛ直线l与⊙O相离>r; 考点十一、切线的判定和性质 (3~8分) 1、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线。 2、切线的性质定理 圆的切线垂直于经过切点的半径。 考点十二、切线长定理 (3分) 1、切线长 在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。 2、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。 考点十三、三角形的内切圆 (3~8分) 1、三角形的内切圆 与三角形的各边都相切的圆叫做三角形的内切圆。 2、三角形的内心 三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。 考点十四、圆和圆的位置关系 (3分) 1、圆和圆的位置关系 如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。 如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。 如果两个圆有两个公共点,那么就说这两个圆相交。 2、圆心距 两圆圆心的距离叫做两圆的圆心距。 3、圆和圆位置关系的性质与判定 设两圆的半径分别为R和r,圆心距为d,那么 dÛ两圆外离>R+r d=R+rÛ两圆外切 R-rÛ两圆相交<d<R+r(R≥r) d=R-r(RÛ两圆内切>r) dÛ两圆内含<R-r(R>r) 4、两圆相切、相交的重要性质 如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。 考点十五、正多边形和圆 (3分) 1、正多边形的定义 各边相等,各角也相等的多边形叫做正多边形。 2、正多边形和圆的关系 只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。 考点十六、与正多边形有关的概念 (3分) 1、正多边形的中心 正多边形的外接圆的圆心叫做这个正多边形的中心。 2、正多边形的半径 正多边形的外接圆的半径叫做这个正多边形的半径。 3、正多边形的边心距 正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。 4、中心角 正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。 考点十七、正多边形的对称性 (3分) 1、正多边形的轴对称性 正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。 2、正多边形的中心对称性 边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。 3、正多边形的画法 先用量角器或尺规等分圆,再做正多边形。 考点十八、弧长和扇形面积 (3~8分) 1、弧长公式 rpn=n°的圆心角所对的弧长l的计算公式为l 180 2、扇形面积公式 Sn 1=R2p360=扇 2lR 其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。 3、圆锥的侧面积 1=S rlp=rp2·2l 其中l是圆锥的母线长,r是圆锥的地面半径。 补充:(此处为大纲要求外的知识,但对开发学生智力,改善学生数学思维模式有很大帮助) 1、相交弦定理 DE·BE=CE·⊙O中,弦AB与弦CD相交与点E,则AE 2、弦切角定理 弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角。 弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角。 即:∠BAC=∠ADC 3、切割线定理 PA为⊙O切线,PBC为⊙O割线, PC·PB=则PA 2 第十三章 图形的变换 考点一、平移 (3~5分) 1、定义 把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。 2、性质 (1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动 (2)连接各组对应点的线段平行(或在同一直线上)且相等。 考点二、轴对称 (3~5分) 1、定义 把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。 2、性质 (1)关于某条直线对称的两个图形是全等形。 (2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。 (3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。 3、判定 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。 4、轴对称图形 把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。 考点三、旋转 (3~8分) 1、定义 把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。 2、性质 (1)对应点到旋转中心的距离相等。 (2)对应点与旋转中心所连线段的夹角等于旋转角。 考点四、中心对称 (3分) 1、定义 把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。 2、性质 (1)关于中心对称的两个图形是全等形。 (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。 3、判定 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。 4、中心对称图形 把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。 考点五、坐标系中对称点的特征 (3分) 1、关于原点对称的点的特征 两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y) 2、关于x轴对称的点的特征 两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y) 3、关于y轴对称的点的特征 两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y) 初中数学总复习知识点 1.数的分类及概念:整数和分数统称有理数(有限小数和无限循环小数),像√3,π,0.101001∙∙∙叫无理数;有理数和无理数统称实数。实数按正负也可分为:正整数、正分数、0、负整数、负分数,正无理数、负无理数。 10(1≤a<10,n是整数),有效数字。´2.自然数(0和正整数);奇数2n-1、偶数2n、质数、合数。科学记数法:a 3.(1)倒数积为1;(2)相反数和为0,商为-1;(3)绝对值是距离,非负数。 4.数轴:①定义(“三要素”);②点与实数的一一对应关系。 (2)性质:若干个非负数的和为0,则每个非负数均为0。 5非负数:正实数与零的统称。(表为:x≥0)(1)常见的非负数有: 6.去绝对值法则:正数的绝对值是它本身,“+( )”;零的绝对值是零,“0”; 负数的绝对值是它的相反数,“-( )”。 7.实数的运算:加、减、乘、除、乘方、开方;运算法则,定律,顺序要熟悉。 8.代数式,单项式,多项式。整式,分式。有理式,无理式。根式。 9. 。 10. 算术平方根: (正数a的正的平方根); 平方根: 11. (1)最简二次根式:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式; (2)同类二次根式:化为最简二次根式以后,被开方数相同的二次根式;(3)分母有理化:化去分母中的根号。 12.因式分解方法:把一个多项式化成几个整式的积的形式A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法。 13.指数:n个a连乘的式子记为 a 。(其中a称底数,n称指数, a 称作幂。) 正数的任何次幂为正数;负数的奇次幂为负数,负数的偶次幂为正数。 16.乘法公式:(a+b)(a-b)=a2-b2222; a2-b2=(a+b)(a-b222 17.算术根的性质:① a ; ; ≥0,b≥0); ④ b (a≥0,b>0) ba=a=0)ab³a(a=2aa2 18.统计初步:通常用样本的特征去估计总体所具有的特征。(1).总体,个体,样本,样本容量(样本中个体的数目)。 (2)众数:一组数据中,出现次数最多的数据。 平均数:平均数是刻划数据的集中趋势(集中位置)的特征数。 中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数) = x 2,„, n =, x 2 - x 1 =n) nn'''③若 x 1 =fk+L+f2+xkfk(f1+L+x2f2+① 1 ; ② x1f1 =xn)x+L+x2+(x1=a , xx-aa+x'= a ; 则 x-x n (3)极差:样本中最大值与最小值的差。它是刻划样本中数据波动范围的大小。 L (x+ + x ) 2 - ( x + x ) 2 - [( x =方差:方差是刻划数据的波动大小的程度。 s 2 x)2]-s21n12n=标准差: s (4)调查:普查:具有破坏性、特大工作量的往往不适合普查;抽样调查:抽样时要主要样本的代表性和广泛性。 (5)频数、频率、频数分布表及频数分布直方图: 19.概率:用来预测事件发生的可能性大小的数学量 (1)P(必然事件)=1;P(不可能事件)=0;0〈P(不确定事件A)〈1。 (2)树形图或列表分析求等可能性事件的概率: ; (3)游戏公平性是指双方获胜的概率的大小是否相等(“牌,球”游戏中放回与不放回的概率是不同的)。 20. (1)两点之间,线段最短(两点之间线段的长度,叫做这两点之间的距离); (2)点到直线之间,垂线段最短(点到直线的垂线段的长度叫做点到直线之间的距离); (3)两平行线之间的垂线段处处相等(这条垂线段的长度叫做两平行线之间的距离); (4)同平行于一条直线的两条直线平行(传递性);(5)同垂直于一条直线的两条直线平行。 21.性质:在垂直平分线上的点到该线段两端点的距离相等;判定:到线段两端点距离相等的点在这线段的垂直平分线上。 22.性质定理:角平分线上的点到该角两边的距离相等;判定定理:到角的两边距离相等的点在该角的角平分线上。 23.同角或等角的余角(或补角)相等。 24.性质:两直线平行,同位角(内错角)相等,同旁内角互补;判定:同位角(内错角)相等(同旁内角互补),两直线平行。 25.三角形分锐角三角形、直角三角形、钝角三角形或等腰三角形、不等边三角形。 ①三角形三个内角的和等于180度;任意一个外角等于和它不相邻的两个内角的和;②第三边大于两边之和,小于两边之差; ③重心:三条中线的交点; 垂心:三条高线的交点;外心:三边中垂线的交点; 内心:三角平分线线的交点。 ④直角三角形斜边上的中线等于斜边的一半; 一边上的中线等于该边一半的三角形是直角三角形。 ⑤勾股定理:直角三角形两直角边的平方和等于斜边的平方;逆定理也成立。 ⑥300角所对的边等于斜边的一半;Rt△中,等于斜边的一半的边所对的角是300。 26.全等三角形:①全等三角形的对应边,角相等。②条件:SSS、AAS、ASA、SAS、HL。 27.等腰三角形:在一个三角形中 ①等边对等角;②等角对等边;③三线合一; ④有一个600角的三角形是等边三角形。 28.三角形的中位线平行于第三边并且等于第三边的一半;梯形的中位线平行于两底并且等于两底和的一半 29.n边形的内角和为(n-2).1800,外角和为3600,正n边形的每个内角等于 。 30.平行四边形的性质:①两组对边分别平行且相等; ②两组对角分别相等;③两条对角线互相平分。 判定:①两组对边分别平行;②两组对边分别相等; ③一组对边平行且相等;④两组对角分别相等; ⑤两条对角线互相平分。 31特殊的平行四边形:矩形、菱形与正方形。 32. 梯形:一组对边平行而另一组对边不平行的四边形。 梯形可分①直角梯形②等腰梯形。 等腰梯形同一底上的两个内角相等; 等腰梯形的对角线相等。 33.梯形常用辅助线: 34.平面图形的密铺(镶嵌):同一顶点的角之和为3600。 35.轴对称:翻转1800能重合; 中心对称(图形):旋转180度能重合。 36.命题(题设和结论)、定义、公理、定理; 原命题,逆命题; 真命题,假命题;反证法。 37. ①轴对称变换:对应点所连的线段被对称轴垂直平分;对应线段,对应角相等。 ②图形的平移:对应线段,对应点所连线段平行(或在同一直线上)且相等;对应角相等;平移方向和距离是它的两要素。 ③图形的旋转:每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。旋转的方向、角度、旋转中心是它的三要素。 ④位似图形:它们具有相似图形的性质外还有图形的位置关系(每组对应点所在的直线都经过同一个点—位似中心);对应点到位似中心的距离比就是位似比,对应线段的比等于位似比,位似比也有顺序;已知图形的位似图形有两个,在位似中心的两侧各有一个。位似中心,位似比是它的两要素。 38.相似图形:形状相同,大小不一定相同(放大或缩小)。 (1)判定①平行;②两角相等;③两边对应成比例,夹角相等;④三边对应成比例。 (2)对应线段比等于相似比;对应高之比等于相似比;对应周长比等于相似比;面积比等于相似比的平方。 (3)比例的基本性质:若 , 则ad=bc;(d称为第四比例项) 比例中项:若 , 则 。(b称为a、c的比例中项;c称为第三比例项) (4)黄金分割:线段AB被点C黄金分割(AC<BC),点C叫做 线段AB的黄金分割点,AC与AB的比叫做黄金比: (5)相似基本图形:平行,不平行;变换对应关系作出正确的分类。 39. 三角函数: 在Rt△ABC中,设k法转化为比的问题是常用方法。 (4).俯、仰角:2.方位角: 3.坡度: (1).定义: (2)特殊角的三角函数值: 记忆碎片 sin30= , tan30= . (3)三角函数关系:sin(90°-α)=cosα; tanα=sinα/cosα; sinα+cosα=1 40. 方程基本概念:方程、方程的解(根)、方程组的解、解方程组 (1).一元一次方程:最简方程ax=b(a≠0);解法。 (2)二元一次方程的解有无数多对。 (3)二元一次方程组:①代入消元法;②加减消元法。 2 2 0 ) 的求根公式¹ 0 ( a = c + bx +ax(4)一元二次方程一般形式: 4 ac-D b =根的判别式:; 2 2 x1,2 常用方法①因式分解法; ②公式法; ③开平方法; ④配方法。 4ac2-b2±b- 0)³4ac-(b= 2a 当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根。 ;分式方程有增根,必须要检验。应用题也不例外。 (5)分式方程: 分式方程 整式方程 ①审题;②设元(未知数);③用含未知数的代数式表示相关的量;④寻找相等关系列方程(组);⑤解方程及检验;⑥答案。 41.(1)不等号:>、<、≥、≤、≠。 (2)一元一次不等式:ax>b、ax<b、ax≥b、ax≤b、ax≠b(a≠0)。 (3)不等式的性质:⑴a>b←→a+c>b+c ⑵a>b←→ac>bc(c>0) ⑶a>b←→ac<bc(c<0) (4)一元一次不等式组: ⑷(传递性)a>b,b>c→a>c ⑸a>b,c>d→a+c>b+d.(用文字怎么叙述?) (5)一元一次不等式的解、解一元一次不等式。(乘除负数要变方向,但要注意乘除正数不要要变方向) (6)一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集) 42.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系; (1)坐标平面内的点与一个有序实数对之间是一一对应的。 (2)两点间的距离: AB=︳Xa-Xb ︳; CD=︳Yc-Yd ︳; 。 (3)X轴上Y=0;Y轴上X=0;一、三象限角平分线,Y=X;二、四象限角平分线,Y=-X。 (4)P(a, b)关于X轴对称P’(a, -b); 关于Y轴对称P’’(a, -b); 关于原点对称P’’’(-a, -b). 43.函数定义:44.表示法:⑴解析法;⑵列表法;⑶图象法。 描点法:⑴列表;⑵描点;⑶连线。 45.自变量取值范围:①分母≠0;②被开方数≥0;③几何图形成立;④实际有意义 46.正比例函数⑴y=kx(k≠0) ⑵图象:直线(过原点) ⑶性质:①k>0,„②k<0,„ 47.一次函数⑴定义:y=kx+b(k≠0) ⑵图象:直线过点(0,b)(-b/k,0) ⑶性质:①k>0,„②k<0,„ 48.反比例函数⑴定义: (k≠0)。⑵图象:双曲线(两个分支支) ⑶性质:①k>0时,图象位于„,y随x„;②k<0时,图象位于„,y随x„; ③两支曲线无限接近永远不能到达坐标轴。 49.二次函数解析式: 特殊型: (1) 与x轴的交点y=0,开平方法, (2)图象:抛物线(“五点一线”要记住) (3)性质:a>0时,在对称轴左侧„,右侧„;当x= ,y有 值,是 ; a<0时,在对称轴左侧„,右侧„;当x= ,y有 值,是 。 (4)平移原则:把解析式化为顶点式,“左+右-;上+下-”。 (5)①a~开口方向,大小;②b~对称轴与a左同右异;③c~与y轴的交点上正下负; ④b2-4ab~与x轴的交点个数;⑤ma+nb~对称轴与常数比;⑥a+b-c~点看(1, a+b-c)。 50.(1)圆有关概念:弦、弦心距、半径、直径、圆心;弧、优弧、劣弧、半圆; 等弧、等圆、同圆、同心圆;圆心角、圆周角;点与圆,直线与圆、圆与圆的位置关系。 (2)不在同一直线上的三点确定一个圆。圆的两条平行弦所夹的弧相等。 (3)垂径定理及其推论:垂直于弦的直径平分这条弦并且平分弦所对的两条弧 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 (4)在同圆或等圆中,如果两个圆心角、两个圆周角、两条弧、两条弦或两弦的弦心距中有一组量相等,那么它们所对应的其余各组量都相等(注意一弦对两弧) (5)一条弧所对的圆周角等于它所对的圆心角的一半;同弧或等弧所对的圆周角相等。 (6)半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径 (7)切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 (8)切线的性质定理 圆的切线垂直于经过切点的半径. 推论1 经过圆心且垂直于切线的直线必经过切点; 推论2 经过切点且垂直于切线的直线必经过圆心 (9)圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 (10)切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角 (11)相交两圆的连心线垂直平分公共弦;相切两圆的连心线必过切点; 51.(1)视点,视线,视角,盲区;投射线,投影,投影面.(投影类的题目常与全等、相似、三角函数结合进行相关的计算。) (2) 中心投影:远光线(太阳光线);平行投影:近光线(路灯光线)。 (3)三视图:主视图,俯视图,左视图。 看不见的轮廓线要画成虚线,线段要保持原长或标明比例尺。 52. 53.面积问题:①同底(或同高),面积比等于高(或底)之比;②相似图形的面积比等于相似比的平方。 54.尺规作图:线段要截,角用弧作,角平分线、垂直平分线须熟记,外接圆、内切圆也不忘。 中考数学常用公式及性质 1. 乘法与因式分解 b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3; ①(a+b)(a-b)=a2-b2;②(a± ④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。 2. 幂的运算性质 a=a①a× ⑥a-n=mnm+na=a;②a÷mnm-nanan;③(a)=a;④(ab)=ab;⑤()=n; bbmnmnnnn1-nn0 n,特别:()=();⑦a=1(a≠0)。 a 3. 二次根式 ①()2=a(a≥0);②=丨a丨;③=×;④=(a>0,b≥0)。 4. 三角不等式 |a|-|b|≤|a±b|≤|a|+|b|(定理); 加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a,b分别为向量a和向量b) |a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ; |a-b|≥|a|-|b|; -|a|≤a≤|a|; 5. 某些数列前n项之和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2 ; 2+4+6+8+10+12+14+…+(2n)=n(n+1); 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6; 13+23+33+43+53+63+…n3=n2(n+1)2/4; 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3; 6. 一元二次方程 对于方程:ax2+bx+c=0: ①求根公式是x △=b2-4ac叫做根的判别式。 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根; 当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。 ②若方程有两个实数根x1和x2,则二次三项式ax2+bx+c可分解为a(x-x1)(x-x2)。 ③以a和b为根的一元二次方程是x2-(a+b)x+ab=0。 7. 一次函数 一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标,称为截距)。 ①当k>0时,y随x的增大而增大(直线从左向右上升); ②当k<0时,y随x的增大而减小(直线从左向右下降); ③特别地:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点。 8. 反比例函数 反比例函数y=(k≠0)的图象叫做双曲线。 ①当k>0时,双曲线在一、三象限(在每一象限内,从左向右降); ②当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升)。 9. 二次函数 0),那么y叫做x的二次函数。¹c(a,b,c是常数,a+bx+ax2=(1).定义:一般地,如果y (2).抛物线的三要素:开口方向、对称轴、顶点。 0时,开口向下;<0时,开口向上;当a>①a的符号决定抛物线的开口方向:当a a相等,抛物线的开口大小、形状相同。 0。=h.特别地,y轴记作直线x=②平行于y轴(或重合)的直线记作x )-2(æb2-4acöb2b-(4).求抛物线的顶点、对称轴的方法 b4ac 2øè,∴顶点是,对称轴是2a4a2a4a+÷+xça=c+bx+ax=①公式法:y b。 2a-=直线x k的形式,得到顶点为+)h-x(a=2 ②配方法:运用配方的方法,将抛物线的解析式化为y h。=(h,k),对称轴是直线x ③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点 是顶点。 (x2,y)(及y值相同)=若已知抛物线上两点(x1,y)、,则对称轴方程可以表示为:x x2 2+c中,a,b,c的作用 (5).抛物线x1+bx+ax=2y ax2中的a完全一样。=①a决定开口方向及开口大小,这与y c的对称轴是直线。+bx+ax2=②b和a共同决定抛物线对称轴的位置.由于抛物线y 0(即a、b同号)时,对称轴在y轴a2a>0时,对称轴为y轴;②=,故:①b-=bbx 0(即a、b异号)时,对称轴在y轴右侧。 a<b左侧;③ c与y轴交点的位置。+bx+ax2=③c的大小决定抛物线y 0,抛物线经过原点;=c与y轴有且只有一个交点(0,c): ①c+bx+ax2=c,∴抛物线y=0时,y=当x 0,与y轴交于负半轴.<0,与y轴交于正半轴;③c>②c 0。 a<b 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则 (6).用待定系数法求二次函数的解析式 c.已知图像上三点或三对x、y的值,通常选择一般式.+bx+ax2=①一般式:y k.已知图像的顶点或对称轴,通常选择顶点式。 2+)h-x(a=②顶点式:y 。)x2-x()x1-x(a=③交点式:已知图像与x轴的交点坐标x1、x2,通常选用交点式:y (7).直线与抛物线的交点 c得交点为(0, c)。+bx+ax2=①y轴与抛物线y ②抛物线与x轴的交点。 c的图像与x轴的两个交点的横坐标x1、x2,是对应一元二次方程+bx+ax2=二次函数y 0的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:=c+bx+ax2 抛物线与x轴相交;Û0)>D(Ûa有两个交点 抛物线与x轴相切;Û0)=D(Ûb有一个交点(顶点在x轴上) 抛物线与x轴相离。Û0)<D(Ûc没有交点 ③平行于x轴的直线与抛物线的交点 同②一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等, k的两个实数根。=c+bx+设纵坐标为k,则横坐标是ax2 n+kx=的图像G的交点,由 y)0¹a(c+bx+ax2=的图像l与二次函数y)0¹k(n+kx=④一次函数y c2的解的数目来确定:+bx+ax=y l与G有两个交点;Ûa方程组有两组不同的解时 l与G只有一个交点;Ûb方程组只有一组解时 l与G没有交点。Ûc方程组无解时 c与x轴两交点为+bx+ax2=⑤抛物线与x轴两交点之间的距离:若抛物线y x2-x1=,则AB)x2,0(,B)x1,0(A 10. 统计初步 (1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n个数x1,x2,…,xn,那么: ①平均数为:x=x1+x2+......+xn; n ②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法 得到的差称为极差,即:极差=最大值-最小值; ③方差:数据x1、x2……, xn的方差为s2, 21轾则s=犏(x1-x)+n臌 ④标准差:方差的算术平方根。 2(x2-x)+.....+2(xn-x)2 数据x1、x2……, xn的标准差s, 则s= 一组数据的方差越大,这组数据的波动越大,越不稳定。 11. 频率与概率 (1)频率 频率=频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各 总数 个小长方形的面积为各组频率。 (2)概率 ①如果用P表示一个事件A发生的概率,则0≤P(A)≤1; P(必然事件)=1;P(不可能事件)=0; ②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。 ③大量的重复实验时频率可视为事件发生概率的估计值; 12. 锐角三角形 ①设∠A是△ABC的任一锐角,则∠A的正弦:sinA= ∠A的正切:tanA=.并且sin2A+cos2A=1。 ,∠A的余弦:cosA=, 0<sinA<1,0<cosA<1,tanA>0.∠A越大,∠A的正弦和正切值越大,余弦值反而越小。 ②余角公式:sin(90º-A)=cosA,cos(90º-A)=sinA。 ③特殊角的三角函数值:sin30º=cos60º=,sin45º=cos45º= tan30º=,tan45º=1,tan60º=。 ,sin60º=cos30º=, ④斜坡的坡度:i=铅垂高度=.设坡角为α,则i=tanα=。 水平宽度13. 正(余)弦定理 (1)正弦定理 a/sinA=b/sinB=c/sinC=2R;注:其中 R 表示三角形的外接圆半径。 正弦定理的变形公式:(1) a=2RsinA, b=2RsinB, c=2RsinC;(2) sinA : sinB : sinC = a : b : c (2)余弦定理 b2=a2+c2-2accosB;a2=b2+c2-2bccosA;c2=a2+b2-2abcosC; 注:∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 14. 三角函数公式 (1) 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文