中考数学压轴题100题.doc
《中考数学压轴题100题.doc》由会员分享,可在线阅读,更多相关《中考数学压轴题100题.doc(50页珍藏版)》请在咨信网上搜索。
我选的中考数学压轴题100题精选 【001】如图,已知抛物线(a≠0)经过点,抛物线的顶点为,过作射线.过顶点平行于轴的直线交射线于点,在轴正半轴上,连结. (1)求该抛物线的解析式; (2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为.问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形? (3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的速度沿和运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为,连接,当为何值时,四边形的面积最小?并求出最小值及此时的长. x y M C D P Q O A B 【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0). (1)当t = 2时,AP = ,点Q到AC的距离是 ; (2)在点P从C向A运动的过程中,求△APQ的面积S与 t的函数关系式;(不必写出t的取值范围) A C B P Q E D 图16 (3)在点E从B向C运动的过程中,四边形QBED能否成 为直角梯形?若能,求t的值.若不能,请说明理由; (4)当DE经过点C 时,请直接写出t的值. 【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长? ②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形? 请直接写出相应的t值。 【004】如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合. (1)求的面积; (2)求矩形的边与的长; (3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移, 设移动时间为秒,矩形与重叠部分的面积为,求关 的函数关系式,并写出相应的的取值范围. A D B E O C F x y y (G) (第4题) 【005】如图1,在等腰梯形中,,是的中点,过点作交于点.,. (1)求点到的距离; (2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设. ①当点在线段上时(如图2),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由; ②当点在线段上时(如图3),是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由. A D E B F C 图4(备用) A D E B F C 图5(备用) A D E B F C 图1 图2 A D E B F C P N M 图3 A D E B F C P N M (第25题) 【006】如图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为。 (1)求该二次函数的关系式; (2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围; (3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。 【007】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值. 【008】如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD。 (1) 求证:BE=AD; (2) 求证:AC是线段ED的垂直平分线; (3) △DBC是等腰三角形吗?并说明理由。 【009】一次函数的图象分别与轴、轴交于点,与反比例函数的图象相交于点.过点分别作轴,轴,垂足分别为;过点分别作轴,轴,垂足分别为与交于点,连接. (1)若点在反比例函数的图象的同一分支上,如图1,试证明: ①; ②. (2)若点分别在反比例函数的图象的不同分支上,如图2,则与还相等吗?试证明你的结论. O C F M D E N K y x (第25题图1) O C D K F E N y x M (第25题图2) 【010】如图,抛物线与轴交于两点,与轴交于C点,且经过点,对称轴是直线,顶点是. (1)求抛物线对应的函数表达式; (2)经过两点作直线与轴交于点,在抛物线上是否存在这样的点,使以点为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由; (3)设直线与y轴的交点是,在线段上任取一点(不与重合),经过三点的圆交直线于点,试判断的形状,并说明理由; (4)当是直线上任意一点时,(3)中的结论是否成立?(请直接写出结论). O B x y A M C 1 (第10题图) 【011】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)求证:EG=CG; (2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. (3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明) D F B A C E 第24题图③ F B A D C E G 第24题图② F B A D C E G 第24题图① 【012】如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点. (1)求抛物线的解析式; (2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长. (3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由. O x y N C D E F B M A 【013】如图,抛物线经过三点. (1)求出抛物线的解析式; (2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由; (3)在直线AC上方的抛物线上有一点D,使得的面积最大,求出点D的坐标. O x y A B C 4 1 (第26题图) 【014】在平面直角坐标中,边长为2的正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将正方形绕点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点,边交轴于点(如图). (1)求边在旋转过程中所扫过的面积; (第26题) O A B C M N (2)旋转过程中,当和平行时,求正方形 旋转的度数; (3)设的周长为,在旋转正方形 的过程中,值是否有变化?请证明你的结论. 【015】如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由. 【016】如图9,已知正比例函数和反比例函数的图象都经过点. (1)求正比例函数和反比例函数的解析式; (2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式; (3)第(2)问中的一次函数的图象与轴、轴分别交于C、D,求过A、B、D三点的二次函数的解析式; (4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积与四边形OABD的面积S满足:?若存在,求点E的坐标; 若不存在,请说明理由. y x O C D B A 3 3 6 【017】如图,已知抛物线经过,两点,顶点为. (1)求抛物线的解析式; (2)将绕点顺时针旋转90°后,点落到点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式; (3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标. y x B A O D (第26题) 【018】如图,抛物线经过、两点,与轴交于另一点. (1)求抛物线的解析式; (2)已知点在第一象限的抛物线上,求点关于直线对称的点的坐标; (3)在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标. y x O A B C 【019】如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CF—EO|,再以CM、CO为边作矩形CMNO (1)试比较EO、EC的大小,并说明理由 (2)令,请问m是否为定值?若是,请求出m的值;若不是,请说明理由 (3)在(2)的条件下,若CO=1,CE=,Q为AE上一点且QF=,抛物线y=mx2+bx+c经过C、Q两点,请求出此抛物线的解析式. (4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否存在点K,使得以P、B、K为顶点的三角形与△AEF相似?若存在,请求直线KP与y轴的交点T的坐标?若不存在,请说明理由。 【020】如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF。 解答下列问题: (1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 ,数量关系为 。 ②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么? (2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动。 试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由。(画图不写作法) (3)若AC=4,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值。 2010年中考数学压轴题100题精选答案 【001】解:(1)抛物线经过点, 1分 二次函数的解析式为: 3分 (2)为抛物线的顶点过作于,则, 4分 x y M C D P Q O A B N E H 当时,四边形是平行四边形 5分 当时,四边形是直角梯形 过作于,则 (如果没求出可由求) 6分 当时,四边形是等腰梯形 综上所述:当、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形. 7分 (3)由(2)及已知,是等边三角形 则 过作于,则 8分 = 9分 当时,的面积最小值为 10分 此时 A C ) B P Q D 图3 E ) F 11分 【002】解:(1)1,; (2)作QF⊥AC于点F,如图3, AQ = CP= t,∴. A C B P Q E D 图4 由△AQF∽△ABC,, 得.∴. ∴, 即. (3)能. A C B P Q E D 图5 A C(E) ) B P Q D 图6 G A C(E) ) B P Q D 图7 G ①当DE∥QB时,如图4. ∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形. 此时∠AQP=90°. 由△APQ ∽△ABC,得, 即. 解得. ②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC,得 , 即. 解得. (4)或. 【注:①点P由C向A运动,DE经过点C. 方法一、连接QC,作QG⊥BC于点G,如图6. ,. 由,得,解得. 方法二、由,得,进而可得 ,得,∴.∴. ②点P由A向C运动,DE经过点C,如图7. ,】 【003】解.(1)点A的坐标为(4,8) …………………1分 将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx 8=16a+4b 得 0=64a+8b 解 得a=-,b=4 ∴抛物线的解析式为:y=-x2+4x …………………3分 (2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即= ∴PE=AP=t.PB=8-t. ∴点E的坐标为(4+t,8-t). ∴点G的纵坐标为:-(4+t)2+4(4+t)=-t2+8. …………………5分 ∴EG=-t2+8-(8-t) =-t2+t. ∵-<0,∴当t=4时,线段EG最长为2. …………………7分 ②共有三个时刻. …………………8分 t1=, t2=,t3= . …………………11分 【004】(1)解:由得点坐标为 由得点坐标为∴(2分) 由解得∴点的坐标为(3分) ∴(4分) (2)解:∵点在上且 ∴点坐标为(5分)又∵点在上且∴点坐标为(6分) ∴(7分) (3)解法一:当时,如图1,矩形与重叠部分为五边形(时,为四边形).过作于,则 A D B E O R F x y y M (图3) G C A D B E O C F x y y G (图1) R M A D B E O C F x y y G (图2) R M ∴即∴ ∴ 即(10分) 图1 A D E B F C G 【005】(1)如图1,过点作于点 1分 ∵为的中点, ∴ 在中,∴ 2分 ∴ 即点到的距离为 3分 (2)①当点在线段上运动时,的形状不发生改变. ∵∴ ∵∴, 同理 4分 如图2,过点作于,∵ 图2 A D E B F C P N M G H ∴ ∴ ∴ 则 在中, ∴的周长= 6分 ②当点在线段上运动时,的形状发生改变,但恒为等边三角形. 当时,如图3,作于,则 类似①, ∴ 7分 ∵是等边三角形,∴ 此时, 8分 图3 A D E B F C P N M 图4 A D E B F C P M N 图5 A D E B F(P) C M N G G R G 当时,如图4,这时 此时, 当时,如图5, 则又 ∴ 因此点与重合,为直角三角形. ∴ 此时, 综上所述,当或4或时,为等腰三角形. 【006】解:(1)OC=1,所以,q=-1,又由面积知0.5OC×AB=,得AB=, 设A(a,0),B(b,0)AB=b-a==,解得p=,但p<0,所以p=。 所以解析式为: (2)令y=0,解方程得,得,所以A(,0),B(2,0),在直角三角形AOC中可求得AC=,同样可求得BC=,显然AC2+BC2=AB2,得△ABC是直角三角形。AB为斜边,所以外接圆的直径为AB=,所以。 (3)存在,AC⊥BC,①若以AC为底边,则BD//AC,易求AC的解析式为y=-2x-1,可设BD的解析式为y=-2x+b,把B(2,0)代入得BD解析式为y=-2x+4,解方程组得D(,9) ②若以BC为底边,则BC//AD,易求BC的解析式为y=0.5x-1,可设AD的解析式为y=0.5x+b,把 A(,0)代入得AD解析式为y=0.5x+0.25,解方程组得D() 综上,所以存在两点:(,9)或()。 【007】 【008】证明:(1)∵∠ABC=90°,BD⊥EC, ∴∠1与∠3互余,∠2与∠3互余, ∴∠1=∠2…………………………………………………1分 ∵∠ABC=∠DAB=90°,AB=AC ∴△BAD≌△CBE…………………………………………2分 ∴AD=BE……………………………………………………3分 (2)∵E是AB中点, ∴EB=EA由(1)AD=BE得:AE=AD……………………………5分 ∵AD∥BC∴∠7=∠ACB=45°∵∠6=45°∴∠6=∠7 由等腰三角形的性质,得:EM=MD,AM⊥DE。 即,AC是线段ED的垂直平分线。……………………7分 (3)△DBC是等腰三角(CD=BD)……………………8分 理由如下: 由(2)得:CD=CE由(1)得:CE=BD∴CD=BD ∴△DBC是等腰三角形。……………………………10分 【009】O C F M D E N K y x 图1 解:(1)①轴,轴, 四边形为矩形. 轴,轴, 四边形为矩形. 轴,轴, 四边形均为矩形. 1分 , , . . , , . 2分 ②由(1)知. . . 4分 , . 5分 . . 6分 轴, 四边形是平行四边形. . 7分 同理. . 8分 (2)与仍然相等. 9分 , O C D K F E N y x M 图2 , 又, . 10分 . . , . . . 11分 轴, 四边形是平行四边形. . 同理. . 12分 【010】y x E D N O A C M P N 1 F (第26题图) 解:(1)根据题意,得 2分 解得抛物线对应的函数表达式为. 3分 (2)存在. 在中,令,得. 令,得,. ,,. 又,顶点. 5分 容易求得直线的表达式是. 在中,令,得. ,. 6分 在中,令,得. . ,四边形为平行四边形,此时. 8分 (3)是等腰直角三角形. 理由:在中,令,得,令,得. 直线与坐标轴的交点是,. ,. 9分 又点,.. 10分 由图知,. 11分 ,且.是等腰直角三角形. 12分 (4)当点是直线上任意一点时,(3)中的结论成立. 14分 【011】解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴ CG= FD.………1分 同理,在Rt△DEF中,EG= FD.…………2分∴ CG=EG.…………………3分 (2)(1)中结论仍然成立,即EG=CG.…………………………4分 证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点. 在△DAG与△DCG中,∵ AD=CD,∠ADG=∠CDG,DG=DG, ∴ △DAG≌△DCG.∴ AG=CG.………………………5分 在△DMG与△FNG中,∵ ∠DGM=∠FGN,FG=DG,∠MDG=∠NFG, ∴ △DMG≌△FNG.∴ MG=NG 在矩形AENM中,AM=EN. ……………6分 在Rt△AMG 与Rt△ENG中,∵ AM=EN, MG=NG, ∴ △AMG≌△ENG.∴ AG=EG.∴ EG=CG. ……………………………8分 证法二:延长CG至M,使MG=CG, 连接MF,ME,EC, ……………………4分 在△DCG 与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG, ∴△DCG ≌△FMG.∴MF=CD,∠FMG=∠DCG. ∴MF∥CD∥AB.………………………5分∴ 在Rt△MFE 与Rt△CBE中, ∵ MF=CB,EF=BE,∴△MFE ≌△CBE.∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°.∴ △MEC为直角三角形.∵ MG = CG,∴ EG= MC.………8分 (3)(1)中的结论仍然成立,即EG=CG.其他的结论还有:EG⊥CG.……10分 【012】解:(1)圆心在坐标原点,圆的半径为1, 点的坐标分别为 抛物线与直线交于点,且分别与圆相切于点和点, .点在抛物线上,将的坐标代入,得: 解之,得: 抛物线的解析式为:. 4分 (2) 抛物线的对称轴为, O x y N C D E F B M A P . 6分 连结, ,, 又, , . 8分 (3)点在抛物线上. 9分 设过点的直线为:, 将点的坐标代入,得:, 直线为:. 10分 过点作圆的切线与轴平行,点的纵坐标为, 将代入,得:. 点的坐标为,当时,, 所以,点在抛物线上. 12分 【013】解:(1)该抛物线过点,可设该抛物线的解析式为. 将,代入, 得解得 此抛物线的解析式为. (3分) (2)存在. (4分) 如图,设点的横坐标为, O x y A B C 4 1 (第26题图) D P M E 则点的纵坐标为, 当时, ,. 又, ①当时, , 即. 解得(舍去),. (6分) ②当时,,即. 解得,(均不合题意,舍去) 当时,. (7分) 类似地可求出当时,. (8分) 当时,. 综上所述,符合条件的点为或或. (9分) (3)如图,设点的横坐标为,则点的纵坐标为. 过作轴的平行线交于.由题意可求得直线的解析式为. (10分) 点的坐标为.. (11分) . 当时,面积最大.. (13分) 【014】(1)解:∵点第一次落在直线上时停止旋转,∴旋转了. ∴在旋转过程中所扫过的面积为.……………4分 (2)解:∵∥,∴,. ∴.∴.又∵,∴. 又∵,,∴.∴.∴.∴旋转过程中,当和平行时,正方形旋转的度数为.……………………………………………8分 (3)答:值无变化. 证明:延长交轴于点,则, ,∴.又∵,.∴.∴. (第26题) O A B C M N 又∵,, ∴. ∴.∴, ∴. ∴在旋转正方形的过程中,值无变化. ……………12分 【015】⑴设二次函数的解析式为:y=a(x-h)2+k∵顶点C的横坐标为4,且过点(0,) ∴y=a(x-4)2+k ………………① 又∵对称轴为直线x=4,图象在x轴上截得的线段长为6 ∴A(1,0),B(7,0) ∴0=9a+k ………………②由①②解得a=,k=∴二次函数的解析式为:y=(x-4)2- ⑵∵点A、B关于直线x=4对称 ∴PA=PB ∴PA+PD=PB+PD≥DB ∴当点P在线段DB上时PA+PD取得最小值 ∴DB与对称轴的交点即为所求点P 设直线x=4与x轴交于点M ∵PM∥OD,∴∠BPM=∠BDO,又∠PBM=∠DBO ∴△BPM∽△BDO∴ ∴∴点P的坐标为(4,) ⑶由⑴知点C(4,),又∵AM=3,∴在Rt△AMC中,cot∠ACM=, ∴∠ACM=60o,∵AC=BC,∴∠ACB=120o ①当点Q在x轴上方时,过Q作QN⊥x轴于N 如果AB=BQ,由△ABC∽△ABQ有 BQ=6,∠ABQ=120o,则∠QBN=60o ∴QN=3,BN=3,ON=10,此时点Q(10,), 如果AB=AQ,由对称性知Q(-2,) ②当点Q在x轴下方时,△QAB就是△ACB,此时点Q的坐标是(4,), 经检验,点(10,)与(-2,)都在抛物线上 综上所述,存在这样的点Q,使△QAB∽△ABC 点Q的坐标为(10,)或(-2,)或(4,). 【016】解:(1)设正比例函数的解析式为, 因为的图象过点,所以,解得. 这个正比例函数的解析式为. (1分) 设反比例函数的解析式为.因为的图象过点,所以 ,解得.这个反比例函数的解析式为. (2分) (2)因为点在的图象上,所以,则点. (3分) 设一次函数解析式为.因为的图象是由平移得到的, 所以,即.又因为的图象过点,所以 ,解得,一次函数的解析式为. (4分) (3)因为的图象交轴于点,所以的坐标为. 设二次函数的解析式为. 因为的图象过点、、和, 所以 (5分) 解得 这个二次函数的解析式为. (6分) (4)交轴于点,点的坐标是, y x O C D B A 3 3 6 E 如图所示, . 假设存在点,使. 四边形的顶点只能在轴上方,, . ,.在二次函数的图象上, .解得或. 当时,点与点重合,这时不是四边形,故舍去, 点的坐标为. (8分) 【017】解:(1)已知抛物线经过, 解得 所求抛物线的解析式为. 2分 (2),, 可得旋转后点的坐标为 3分 当时,由得, 可知抛物线过点 将原抛物线沿轴向下平移1个单位后过点. 平移后的抛物线解析式为:. 5分 (3)点在上,可设点坐标为 将配方得,其对称轴为. 6分 y x C B A O N D B1 D1 图① ①当时,如图①, 此时 y x C B A O D B1 D1 图② N 点的坐标为. 8分 ②当时,如图② 同理可得 此时 点的坐标为. 综上,点的坐标为或. 10分 【018】解:(1)抛物线经过,两点, 解得 抛物线的解析式为. y x O A B C D E (2)点在抛物线上,, 即,或. 点在第一象限,点的坐标为. 由(1)知. 设点关于直线的对称点为点. ,,且, , 点在轴上,且. ,. 即点关于直线对称的点的坐标为(0,1). (3)方法一:作于,于. y x O A B C D E P F 由(1)有:, . ,且. , . ,,, . 设,则,, . 点在抛物线上, , (舍去)或,. y x O A B C D P Q G H 方法二:过点作的垂线交直线于点,过点作轴于.过点作于. . , 又,. ,,. 由(2)知,. ,直线的解析式为. 解方程组得 点的坐标为. 【019】(1)EO>EC,理由如下: 由折叠知,EO=EF,在Rt△EFC中,EF为斜边,∴EF>EC, 故EO>EC …2分 (2)m为定值 ∵S四边形CFGH=CF2=EF2-EC2=EO2-EC2=(EO+EC)(EO―EC)=CO·(EO―EC) S四边形CMNO=CM·CO=|CE―EO|·CO=(EO―EC) ·CO ∴ ……………………………………………………4分 (3)∵CO=1, ∴EF=EO= ∴cos∠FEC= ∴∠FEC=60°, ∴ ∴△EFQ为等边三角形, …………………………………………5分 作QI⊥EO于I,EI=,IQ= ∴IO= ∴Q点坐标为 ……………………………………6分 ∵抛物线y=mx2+bx+c过点C(0,1), Q ,m=1 ∴可求得,c=1 ∴抛物线解析式为 ……………………………………7分 (4)由(3), 当时,<AB ∴P点坐标为 …………………8分 ∴BP=AO 方法1:若△PBK与△AEF相似,而△AEF≌△AEO,则分情况如下: ①时,∴K点坐标为或 ②时, ∴K点坐标为或…………10分 故直线KP与y轴交点T的坐标为 …………………………………………12分 方法2:若△BPK与△AEF相似,由(3)得:∠BPK=30°或60°,过P作PR⊥y轴于R,则∠RTP=60°或30° ①当∠RTP=30°时, ②当∠RTP=60°时, ∴ ……………………………12分 【020】解:(1)①CF⊥BD,CF=BD ②成立,理由如下:∵∠FAD=∠BAC=90° ∴∠BAD=∠CAF 又 BA=CA ,AD=AF ∴△BAD≌△CAF∴CF=BD ∠ACF=∠ACB=45° ∴∠BCF=90° ∴CF⊥BD ……(1分) (2)当∠ACB=45°时可得CF⊥BC,理由如下: 如图:过点A作AC的垂线与CB所在直线交于G 则∵∠ACB=45° ∴AG=AC ∠AGC=∠ACG=45° ∵AG=AC AD=AF ………(1分) ∴△GAD≌△CAF(SAS) ∴∠ACF=∠AGD=45° ∴∠GCF=∠GCA+∠ACF=90° ∴CF⊥BC …………(2分) (3)如图:作AQBC于Q ∵∠ACB=45° AC=4 ∴CQ=AQ=4 ∵∠PCD=∠ADP=90°∴∠ADQ+∠CDP=∠CDP+∠CPD=90° ∴△ADQ∽△DPC …(1分) ∴= 设CD为x(0<x<3)则DQ=CQ-CD=4-x则= …………(1分) ∴PC=(-x2+4x)=-(x-2)2+1≥1 当x=2时,PC最长,此时PC=1 ………(1分)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 压轴 100
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文