中考数学知识点( 四边形).doc
《中考数学知识点( 四边形).doc》由会员分享,可在线阅读,更多相关《中考数学知识点( 四边形).doc(15页珍藏版)》请在咨信网上搜索。
11. 四边形(分类) 11.1. 四边形(包含题目总数:8) 010010; 010020; 010030; 010040; 010050; 010100; 010120; 010510; 11.1.1. 四边形的相关概念 在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形.四边形用表示它的各顶点的字母来表示. 注意:表示四边形必须按顶点的顺序书写,可按照顺时针或逆时针的顺序.如图读作“四边形” . 把四边形的任一边向两方延长,如果其它各边都在延长线所得直线的同一旁,这样的四边形叫做凸四边形. 注意:我们今后研究的四边形都指凸四边形. 在四边形中,连结不相邻两个顶点的线段叫做四边形的对角线. 注意: ①四边形共有两条对角线. ②连结四边形的对角线也是一种常用的辅助线作法. 四边形的不稳定性: 三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性.但是,四边形四边长确定后,它的形状不能确定.这就是四边形具有不稳定性,它在生产、生活方面有很多的应用. 11.1.2. 四边形的内角和定理及外角和定理 四边形内角和定理:四边形的内角和等于. 四边形外角和定理:四边形的外角和等于. 注意: 1、四边形内角中最多有三个钝角,四个直角,三个锐角; 2、四边形外角中最多有三个钝角、四个直角、三个锐角,最少没有钝角,没有直角,没有锐角; 3、四边形内角与同一个顶点的一个外角互为邻补角. 推论: 1、多边形内角和定理:边形的内角和等于. 2、多边形外角和定理:任意多边形的外角和等于. 3、边形共有条对角线. 11.1.3. 多边形对角线条数公式 设多边形边数为n,则多边形对角线条数为. 11.2. 平行四边形(包含题目总数:11) 010060; 010070; 010080; 010090; 010110; 010130; 010140; 010150; 010160; 010170; 010780; 11.2.1. 平行四边形的概念 两组对边分别平行的四边形是平行四边形.平行四边形用符号“ ”表示.平行四边形记作 .读作:平行四边形. 11.2.2. 平行四边形的性质 (1)平行四边形的邻角互补,对角相等. (2)平行四边形的对边平行且相等. (3)夹在两条平行线间的平行线段相等. (4)平行四边形的对角线互相平分. (5)若一直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分四边形的面积. 11.2.3. 平行四边形的判定 平行四边形的判定: (1)定义:两组对边分别平行的四边形是平行四边形. (2)定理1:两组对角分别相等的四边形是平行四边形. (3)定理2:两组对边分别相等的四边形是平行四边形. (4)定理3:对角线互相平分的四边形是平行四边形. (5)定理4:一组对边平行且相等的四边形是平行四边形. 平行四边形的判定定理的选择: 已知条件 选择的判定定理 边 一组对边相等 定理2或定理4 一组对边平行 定义或定理4 角 一组对角相等 定理1 对角线 定理3 11.2.4. 两条平行线的距离 两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离.平行线间的距离处处相等. 注意: (1)距离是指垂线段的长度,是正值. (2)两条平行线的位置确定后,它们的距离是定值,不随垂线段位置改变. (3)平行线间的距离处处相等,因此在作平行四边形的高时,可根据需要灵活选择位置. 11.2.5. 平行四边形的面积 1、如图1,. 也就是底边长×高(是平行四边形任何一边长,必须是边与其对边的距离). 注意:这里的底是相对高而言的,也就是高所在的边,平行四边形任一边都可作底,底确定后,高也就确定了. 2、同底(等底)同高(等高)的平行四边形面积相等. 如图2,. 图1 图2 11.3. 矩形(包含题目总数:10) 010180; 010190; 010200; 010210; 010220; 010230; 010240; 010250; 010340; 010770; 11.3.1. 矩形的概念 有一个角是直角的平行四边形是矩形. 注意:矩形首先是平行四边形,然后增加一个角是直角这个特殊条件. 11.3.2. 矩形的性质 (1)具有平行四边形的一切性质. (2)矩形的四个角都是直角. (3)矩形的对角线相等. (4)矩形是轴对称图形. 利用矩形的性质可以证明线段相等或倍分、直线平行、角相等等. 11.3.3. 矩形的判定 (1)定义:有一个角是直角的平行四边形是矩形. (2)定理1:有三个角是直角的四边形是矩形. (3)定理2:对角线相等的平行四边形是矩形. 注意: ①用定义判定一个四边形是矩形必须同时满足两个条件:一是有一个角是直角;二是平行四边形.也就是说有一角是直角的四边形,不一定是矩形,必须加上平行四边形这个条件,它才是矩形. ②用定理2证明一个四边形是矩形,也必须满足两个条件:一是对角线相等;二是平行四边形.也就说明:两条对角线相等的四边形不一定是矩形,必须加上平行四边形这个条件,它才是矩形. 11.3.4. 矩形的面积 矩形面积=长×宽. 11.4. 菱形(包含题目总数:14) 010260; 010270; 010280; 010290; 010300; 010310; 010311; 010320; 010330; 010350; 010360; 010370; 010380; 010800; 11.4.1. 菱形的概念 有一组邻边相等的平行四边形叫做菱形. 注意:菱形必须满足两个条件:一是平行四边形;二是一组邻边相等. 11.4.2. 菱形的性质 (1)具有平行四边形的一切性质. (2)菱形的四条边都相等. (3)菱形的对角线互相垂直,并且每一条对角线平分一组对角. (4)菱形是轴对称图形. 11.4.3. 菱形的判定 (1)定义:有一组邻边相等的平行四边形叫做菱形. (2)定理1:四边都相等的四边形是菱形. (3)定理2:对角线互相垂直的平行四边形是菱形. 注意:对角线互相垂直的四边形不一定是菱形,必须加上平行四边形这个条件它才是菱形. 利用菱形的性质及判定可以证明线段相等及倍分、角相等及倍分、直线平行、垂直,以及证明一个四边形是菱形和有关计算. 11.4.4. 菱形的面积 菱形面积=底×高=对角线乘积的一半. 11.5. 正方形(包含题目总数:13) 010390; 010400; 010420; 010430; 010440; 010450; 010460; 010470; 010480; 010500; 010520; 010530; 010540; 11.5.1. 正方形的概念 有一组邻边相等并且有一个角是直角的平行四边形叫做正方形. 从正方形的定义可知正方形既是一组邻边相等的矩形,又是有一个角是直角的菱形,所以既是矩形又是菱形的四边形是正方形. 矩形、菱形、正方形都是特殊的平行四边形,它们的包含关系如图: 11.5.2. 正方形的性质 (1)正方形具有四边形、平行四边形、矩形、菱形的一切性质. (2)正方形性质定理1:正方形的四个角都是直角,四条边都相等. (3)正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角. (4)正方形是轴对称图形,有4条对称轴. (5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个小的全等的等腰直角三角形. (6)正方形一条对角线上一点和另一条对角线的两端距离相等. 11.5.3. 正方形的判定 (1)判定一个四边形为正方形主要根据定义,途径有两种: ①先证它是矩形,再证它有一组邻边相等. ②先证它是菱形,再证它有一个角为直角. (2)判定正方形的一般顺序: ①先证明它是平行四边形; ②再证明它是菱形(或矩形); ③最后证明它是矩形(或菱形). 11.5.4. 正方形的面积 正方形的面积等于边长的平方,或者等于两条对角线乘积的一半.即:若正方形的边长为,对角线长为,则有正方形的面积. 11.6. 梯形(包含题目总数:18) 010410; 010490; 010550; 010551; 010560; 010570; 010580; 010590; 010600; 010610; 010620; 010630; 010640; 010730; 010740; 010760; 010790; 010820; 11.6.1. 梯形的相关概念 一组对边平行而另一组对边不平行的四边形叫做梯形.梯形中平行的两边叫做梯形的底. 注意:通常把较短的底叫做上底,较长的底叫做下底,梯形的上下底是以长短区分的,不是指位置说的.梯形中不平行的两边叫做梯形的腰.梯形两底的距离叫做梯形的高. 两腰相等的梯形叫做等腰梯形.一腰垂直于底的梯形叫做直角梯形. 梯形一般如下分类: 转化 分割、拼接 解决梯形问题的基本思路: 梯形问题 三角形或平行四边形问题. 这种思路常通过平移或旋转来实现. 11.6.2. 梯形的判定 梯形的判定: (1)定义法:判定四边形中①一组对边平行;②另一组对边不平行. (2)有一组对边平行且不相等的四边形是梯形. 注意:此判定可由梯形定义和一组对边平行且相等的四边形是平行四边形得出. 11.6.3. 等腰梯形的性质 (1)等腰梯形两腰相等、两底平行. (2)等腰梯形在同一底上的两个角相等. (3)等腰梯形的对角线相等. (4)等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴. 注意:等腰梯形在同一底上的两个角相等,不能说成:①等腰梯形两底上的角相等;②等腰梯形同一底上的两底角相等. 11.6.4. 等腰梯形的判定 (1)两腰相等的梯形是等腰梯形. (2)在同一底上的两个角相等的梯形是等腰梯形. (3)对角线相等的梯形是等腰梯形. 11.6.5. 梯形的面积 (1)如图,. (2)梯形中有关图形面积: ①. ②. ③. 11.7. 平行线等分线段定理(包含题目总数:2) 010650; 010750; 平行线等分线段定理: 定理:如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等. 定理的作用: ①可以证明同一条直线上的线段相等. ②可以任意等分线段. 注意: (1)定理中的“平行线组”是每相邻两条的距离都相等的特殊的平行线组. (2)定理中的“平行线组”是由三条或三条以上直线组成的. 平行线等分线段定理的推论: 推论1:经过梯形一腰中点与底平行的直线必平分另一腰. 推论2:经过三角形一边中点与另一边平行的直线必平分第三边. 它们的作用为:平分线段,求线段的中点或证明线段的倍分. 这两个推论可简记为:“中点”+“平行”中点. 11.8. 三角形、梯形中位线(包含题目总数:7) 010660; 010670; 010680; 010690; 010700; 010710; 010720; 11.8.1. 三角形、梯形中位线的概念 连结三角形两边中点的线段叫做三角形的中位线. 注意: ①三角形共有三条中位线,并且它们又重新构成一个新的三角形. ②要会区别三角形中线与中位线. 连结梯形两腰中点的线段叫做梯形的中位线. 注意:梯形中位线是连结两腰中点的线段,而不是连结两底的中点的线段. 11.8.2. 三角形中位线定理 三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半. 三角形中位线定理的作用: ①位置关系:可以证明两条直线平行. ②数量关系:可以证明线段的倍分关系. 任一个三角形都有三条中位线,由此有: 结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半. 结论2:三条中位线将原三角形分割成四个全等的三角形. 结论3:三条中位线将原三角形划分出三个面积相等的平行四边形. 结论4:三角形一条中线和与它相交的中位线互相平分. 结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等. 11.8.3. 梯形中位线定理 梯形中位线定理:梯形中位线平行于两底,并且等于两底和的一半. 梯形中位线定理的作用: ①位置关系:可以证明三条直线平行. ②数量关系:可以证明一条线段与另两条线段的倍分关系.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考数学知识点 四边形 中考 数学 知识点 四边形
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文