代入消元法结二元一次方程组.docx
《代入消元法结二元一次方程组.docx》由会员分享,可在线阅读,更多相关《代入消元法结二元一次方程组.docx(5页珍藏版)》请在咨信网上搜索。
代入消元法解二元一次方程组的教学设计 教学目标 1,掌握用代入消元法解二元一次方程组的步骤 2,熟练运用代入消元法解简单的二元一次方程组 3,掌握“消元思想” 重点 用代入消元法解二元一次方程组 难点 如何灵活地“消元”,把“二元”转化为“一元” 教学准备 ppt 教学活动 教学步骤 师生活动 设计意图 巩固复习 1、用含x的代数式表示y: 2x + y = 22 2、用含y的代数式表示x: 2x - 5y = 8 通过复习为后面的“变形”做铺垫 情景导入 ppt出示图片,提出问题:你知道一个茶杯和一瓶可乐各多少钱吗? 从生活实际问题出发,引入二元一次方程组的解法 探究新知 【探究一】 篮球联赛中每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.如果某队为了争取较好名次,想在全部10场比赛中得16分,那么这个队胜、负场数应分别是多少? 问题:(1)用两种方法列方程(设两个未知数,设一个未知数) (2) 观察上面的二元一次方程组和一元一次方程有什么关系? 提出【消元思想】: 二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求另一未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想. 通过上面的活动,提出【代入代入消元法】的定义。上面的解法,是把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫代入消元法,简称代入法. 通过几个问题引导学生思考二元一次方程组和一元一次方程的关系。 引导学生根据一元一次方程的解法,解决二元一次方程,得出化成一元一次方程来求解的方法——代入消元法 【例1】用代入法解方程组 x-y=3 ① 3x-8y=14 ② 思考:(1)把③代入①可以吗? (2)把求出的解y=-1代入方程①或②可不可以求出x的解? 检验方法: 把求出的解代入原方程组,可以知道你解得对不对。 [方法归纳] 用代入法解二元一次方程组的一般步骤: (1)将方程组里的一个方程变形为用含有一个未知数的式子表示另一个未知数; (2)用这个式子代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值; (3)把这个未知数的值代入上面的式子或原方程组中任意一个方程,求得另一个未知数的值; (4)写出方程组的解. 进一步熟悉解二元一次方程组的基本思路,熟练解二元一次方程组的基本步骤和过程. 【例2】 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)的比为 某厂每天生产这种消毒液22.5t,这些消毒液应该分装大、小瓶两种产品各多少瓶? 分析:这个问题当中有几个未知数,有几个相等关系?你能根据这些未知数与相等关系列出方程吗? 总结:代入法解二元一次方程组的步骤: 通过让学生解决数学问题,将新知识得以应用,同时为学生提供充分发挥创造力的空间,更大地调动学生的积极性. 当堂训练 x-2y=-1, 2x+3y=12. 1、用代入消元法解下列方程组 x-2y=-1, 2x+3y=12. 3x-y=11, 2x+3y=0 2、若方程 x 2m+n —4y 3m-2n = 9是关于 x,y的二元一次方程,求m ,n 的值. 通过练习进一步巩固代入法解二元一次方程组. 课后作业 1.用代入法解方程组 3x+4y=2,① x-2y=-5.② 代入后比较容易化简的变形是( ) A.由①,得x=3(2-4y) B.由①,得y= (2-3x) C.由②,得y=2(x+5) D.由②,得x=2y-5 2 .用代入法解方程组: 3x-y=7,① 5x+2y=8.② 小明是这样解的: 解:由①,得y=3x-7.③ 第一步 把③代入①,得3x-(3x-7)=7,第二步 即7=7. 第三步 所以此方程组无解.第四步 你认为他的解法有误吗?若有误,开始出现错误的是第______步,请你写出正确的解法. 3x-y=7,① 5x+2y=8.② 进一步落实 总结反思 【板书设计】 二元一次方程组 消元思想 代入消元法 代入消元法解二元一次方程组的步骤 建立知识体系 课后反思: 代入法解方程的关键在于根据方程特点选择一个较简单的方程进行变形,代入另一方程使二元一次方程组转化为一元一次方程,最后通过解一元一次方程求得二元一次方程组的解.方法比较简单,关键是教会学生如何选择较简单的方程进行变形.这也是学生的一个难点。用代入消元法解二元一次方程组时,尽量选取一个未知数的系数的绝对值是1的方程进行变形;若未知数的系数的绝对值都不是1,则选取系数的绝对值较小的方程变形.本节课重点突出,讲练结合,不足之处是学生自己发现规律、总结规律的能力还是没有得到很好的提升。 反思教学,提升自我- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 代入 消元法结 二元 一次 方程组
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文