解二元一次方程组---加减消元.docx
《解二元一次方程组---加减消元.docx》由会员分享,可在线阅读,更多相关《解二元一次方程组---加减消元.docx(4页珍藏版)》请在咨信网上搜索。
第2课时 加减消元法 1.掌握用加减法解二元一次方程组. 2.使学生理解加减消元法所体现的“化未知为已知”的化归思想方法. 重点 如何用加减法解二元一次方程组. 难点 如何运用加减法进行消元. 一、创设情境,引入新课 教师提出问题: 王老师昨天在水果批发市场买了2千克苹果和4千克梨,共花了14元,李老师以同样的价格买了2千克苹果和3千克梨,共花了12元,梨每千克的售价是多少?比一比看谁求得快. 教师总结最简便的方法: 抵消掉相同的部分,王老师比李老师多买了1千克的梨,多花了2元,故梨每千克的售价为2元. 二、例题讲解 教师板书: 解方程组 (由学生自主探究,并给出不同的解法) 解法一: 由①得x=,代入方程②,消去x. 解法二: 把2x看作一个整体,由①得2x=-1-3y,代入方程②,消去2x. 教师肯定两种解法都正确,并由学生比较两种方法的优劣. 由学生观察,得出结论: 解法二整体代入更简便,准确率更高. 教师启发: 有没有更简洁的解法呢? 问题1:观察上述方程组,未知数x的系数有什么特点?(相等) 问题2:除了代入消元,你还有别的办法消去x吗? (两个方程的两边分别对应相减,就可消去x,得到一个一元一次方程.) 解法三: ①-②得:8y=-8, 所以y= -1. 代入①或②, 得x=1. 所以原方程组的解为 变式一:解方程组 教师启发: 问题1:观察上述方程组,未知数x的系数有什么特点?(互为相反数) 问题2:除了代入消元,你还有别的办法消去x吗? (两个方程的两边分别对应相加,就可消去x,得到一个一元一次方程.) 教师板书: 两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法. 教师提问: 能用加减消元法解二元一次方程组的前提是什么? (两个二元一次方程中同一未知数的系数相反或相等.) 变式二:解方程组 学生观察:本例可以用加减消元法来做吗? 教师引导: 问题1:这两个方程直接相加减能消去未知数吗?为什么? 问题2:那么怎样使方程组中某一未知数的系数的绝对值相等呢? 教师启发学生仔细观察方程组的结构特点,发现x的系数成整数倍数关系. 因此:②×2,得4x-10y=14. ③ 由①-③即可消去x,从而使问题得解. (教师追问:③-①可以吗?怎样更好?) 变式三:解方程组 教师提问: 本例题可以用加减消元法来做吗? 让学生独立思考,怎样变形才能使方程组中某一未知数的系数的绝对值相等呢? 分析得出解题方法: 解法1:通过①×3、②×2,使关于x的系数绝对值相等,从而可用加减法解得. 解法2:通过①×5、②×3,使关于y的系数绝对值相等,从而可用加减法解得. 教师追问: 怎样更好呢? 通过对比,学生自己总结出应选择方程组中同一未知数系数绝对值的最小公倍数较小的未知数消元. 解后反思:用加减法解同一个未知数的系数绝对值不相等且不成整数倍的二元一次方程组时,把一个(或两个)方程的两边乘以适当的数,使两个方程中某一未知数的系数绝对值相等,从而化为第一类型的方程组求解. 师生共析: 1.用加减消元法解二元一次方程组的基本思路仍然是“消元”. 2.用加减法解二元一次方程组的一般步骤: 第一步:如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数. 第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数,然后将原方程组变形,使新方程组的这组系数的绝对值相等,再加减消元. 第三步:对于较复杂的二元一次方程组,应先化简,再作如上加减消元的考虑. 【例】 2台大收割机和5台小收割机同时工作2 h共收割小麦3.6 hm2,3台大收割机和2台小收割机同时工作5 h共收割小麦8 hm2.1台大收割机和1台小收割机每小时各收割小麦多少公顷? 分析:如果1台大收割机和1台小收割机每小时各收割小麦x hm2和y hm2,那么2台大收割机和5台小收割机同时工作1 h共收割小麦________hm2,3台大收割机和2台小收割机同时工作1 h共收割小麦________hm2.由此考虑两种情况下的工作量. 解:设1台大收割机和1台小收割机每小时各收割小麦x hm2和y hm2. 根据两种工作方式中的相等关系,得方程组 去括号,得 ②-①,得 11x=4.4. 解这个方程,得 x=0.4. 把x=0.4代入①,得 y=0.2. 因此,这个方程组的解是 答:1台大收割机和1台小收割机每小时各收割小麦0.4 hm2和0.2 hm2. 上面解方程组的过程可以用下面的框图表示: 三、巩固练习 1.用加减法解下列方程组时,你认为先消去哪个未知数较简单,填写消元的方法. (1)消元方法:________. (2)消元方法:________. 2.用加减法解下列方程组: (1) (2) (3) (4) 【答案】 1.(1)①×2-②消去y (2)①×2+②×3消去n 2.(1) (2) (3) (4) 四、课堂小结 本节课,我们主要学习了二元一次方程组的另一种解法——加减消元法,通过把方程组中的两个方程进行相加或相减,消去一个未知数,化“二元”为“一元”,请同学们回忆:加减消元法解二元一次方程组的基本思想是什么?用加减消元法解二元一次方程组的主要步骤有哪些? 在学习加减法解题之前,学生已经知道了代入法解二元一次方程组的核心是代入“消元”,以使二元方程转化为一元方程求解.本课设计没有直接告诉学生加减法解题的过程,而是通过引导学生观察不同方程组的结构特点,比较不同解法的优劣,自己探索发现解题的技巧.这样使学生积极地参加到学习的过程中,不仅能感受到学习的乐趣,更重要的是在这种积极求索的学习中,品尝到了成功的喜悦,促使其能力得到充分的发挥、提高.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二元 一次 方程组 加减
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文