两因素方差分析检验.doc
《两因素方差分析检验.doc》由会员分享,可在线阅读,更多相关《两因素方差分析检验.doc(17页珍藏版)》请在咨信网上搜索。
, 本科学生实验报告 学号: …………………… 姓名: ****** 学院: 生命科学学院 专业、班级:11级应用生物教育A班 实验课程名称: 生物统计学实验 教 师: 孟丽华(教授) 开 课 学 期: 2012 至 2013 学年 下 学期 填 报 时 间: 2013 年 5 月 15 日 云南师范大学教务处编印 一.实验设计方案 实验序号及名称:实验九:为了选出某物质较为适宜的条件的两因素方差分析检验 实验时间 2013-05-10 实验室 睿智楼3幢326 (一)、实验目的: 1、能够熟练的使用SPSS进行二因素方差分析; 2、通过本次试验理解二因素方差分析的概念和思想,理解多个因素存在交互效应的统计学含义和实际含义; 3、了解方差分析分解的理论基础和计算原理,能够熟练应用单因素方差分析对具体的实际问题进行有效的分析,通过测量数据研究各个因素对总体的影响效果,判定因素在总变异中的重要程度; 4、进一步熟悉SPSS软件的应用。 (二)、实验设备及材料: 微机、SPSS for Windows V 18.0统计软件包及相应的要统计的数据 (三)、实验原理: 1、两因素方差分析主要用来检测两个自变量之间的是否有显著的影响,检测不同组合之间哪种最显著; 2、两因素方差分析有两种类型:一个是无交互作用的双因素方差分析,它假定因素A和因素B的效应之间是相互独立的,不存在相互关系;另一个是有交互作用的双因素方差分析,它假定因素A和因素B的结合会产生出一种新的效应; 3、双因素方差分析的前提假定:采样地随机性,样本的独立性,分布的正态性,残差方差的一致性; 4、比较观测变量总离差平方和各部分的比例,在观测变量总离差平方和中,如果组间离差平方和所占比例较大,则说明观测变量的变动主要是由于控制变量引起的,可以主要由控制变量来解释,即控制变量给观测变量带来了显著影响; 5、两因素方差分析:(一)、交叉分组资料的方差分析:设试验考察A、B两个因素,A因素分个水平,B因素分b个水平。所谓交叉分组是指A因素每个水平与B因素的每个水平都要碰到,两者交叉搭配形成b个水平组合即处理,试验因素A、B在试验中处于平等地位,试验单位分成b个组,每组随机接受一种处理,因而试验数据也按两因素两方向分组。这种试验以各处理是单独观测值还是有重复观测值又分为两种类型:1)、两因素单独观测值试验资料的方差分析对于A、B两个试验因素的全部b个水平组合,每个水平组合只有一个观测值,全试验共有b个观测值;2)、两因素有重复观测值试验的方差分析对两因素和多因素有重复观测值试验结果的分析,能研究因素的简单效应、主效应和因素间的交互作用(互作)效应;(二)、无交互作用的双因素试验的方差分析:1)、基本假设:方差齐性和相互独立;2)、线性统计模型: ,其中 ,所有期望值的总平均 : , 要分析因素A,B的差异对试验结果是否有显著影响,即为检验如下假设是否成立: , ; 6、两因素方差分析的进一步分析:1)、方差齐性检验:由于方差分析的前提是各水平下的总体服从正态分布并且方差相等,因此有必要对方差齐性进行检验,即对控制变量不同水平下各观测变量不同总体方差是否相等进行分析。SPSS单因素方差分析中,方差齐性检验采用了方差同质性(Homogeneity of Variance)的检验方法,其零假设是各水平下观测变量总体方差无显著性差异,实现思路同SPSS两独立样本t检验中的方差齐性检验;2)、多重比较检验:多重比较检验就是分别对每个水平下的观测变量均值进行逐对比较,判断两均值之间是否存在显著差异。其零假设是相应组的均值之间无显著差异;3)、其他检验:①先验对比检验,②趋势检验; 7、方差分析与t检验的区别:t检验只适宜检验两个平均数之间是否存在差异。对于一个复杂的问题,t检验只能进行多组平均数两两之间的差异检验。而方差分析可以同时检验两个或多个平均数之间的差异以及几个因素水平之间的交互作用; 8、有时原始资料不满足方差分析的要求,除了求助于非参数检验方法外,也可以考虑变量变换。常用的变量变换方法有:对数转换:用于服从对数正态分布的资料等;平方根转换:可用于服从Possion分布的资料等;平方根反正弦转换:可用于原始资料为率,且取值广泛的资料;其它:平方变换、倒数变换、Box-Cox变换等。 (四)、实验内容: 内容:生物统计学(第四版)121页第六章习题 6.7 实验方法步骤 1、启动spss软件:开始→所有程序→SPSS→spss for windows→spss 18.0 for windows,直接进入SPSS数据编辑窗口进行相关操作; 2、定义变量,输入数据。点击“变量视图”定义变量工作表,用“name”命令定义变量“适宜的条件”(小数点零位);变量“原料”(小数点零位),“A1”赋值为“1”,“A2”赋值为“2” ,“A3”赋值为“3” , 变量“温度”(小数点零位),“B1(30℃)”赋值为“1”,“B2(35℃)”赋值为“2” ,“B3(40℃)”赋值为“3”,点击“变量视图工作表”,一一对应将不同“原料”与“温度”的适宜的条件的数据依次输入到单元格中; 3、设置分析变量。数据输入完后,点菜单栏:“分析(A)”→“一般线性模型(G)”→“单变量(U)…”,将“适宜的条件”移到因变量列表(E)中,将“原料”及“温度”移入固定因子(F)的列表中进行分析; 1)、点“模型(M)…”, 指定因子:“全因子”前打钩,“在模型中包含截距”前打钩,(默认),点“继续”; 2)、点“绘制(T)…”:将“原料”移入“水平轴”列表中,将“温度”移入“单图”中; 3)、点“两两比较(H)…”,将因子“原料”和“温度”移入“两两比较检验”列表中,①假定方差齐性:点“S-N-K(S)”法检验;②未假定方差齐性,点“Tamhane’s T2(M)”,点“继续”,然后点“确定”,便出结果; 4)、点“选项(O)…”,估计边际均值:将“因子与因子交互”列表中的“OVERLL”、“原料”、“温度”、“原料*温度”移入“显示均值”列表中,在“比较主效应”前打钩,输出:在“描述统计”、“方差齐性检验”、“功能估计”、“分布-水平图”、“检验效能”、“参数估计”前打钩,显著水平:0.05(默认),点“继续”,然后点击“确定”便出结果; 模型(M)…: 绘制(T)… 两两比较(H)… 选项(O)… 4、表格绘制出来后,进行检查修改,将其复制到实验报告中,将虚框隐藏等; 5、将所求的描述性统计指标数据表格保存,对其所求得的结果进行分析,书写实验报告。 (五)、实验结果: UNIANOVA 适宜的条件 BY 原料 温度 /METHOD=SSTYPE(3) /INTERCEPT=INCLUDE /POSTHOC=原料 温度(SNK) /PLOT=PROFILE(原料*温度) /EMMEANS=TABLES(OVERALL) /EMMEANS=TABLES(原料) COMPARE ADJ(LSD) /EMMEANS=TABLES(温度) COMPARE ADJ(LSD) /EMMEANS=TABLES(原料*温度) /PRINT=OPOWER ETASQ HOMOGENEITY DESCRIPTIVE PARAMETER /PLOT=SPREADLEVEL /CRITERIA=ALPHA(.05) /DESIGN=原料 温度 原料*温度. 方差的单变量分析 表1 主体间因子 值标签 N 原料 1 A1 12 2 A2 12 3 A3 12 温度 1 B1(30℃) 12 2 B2(35℃) 12 3 B3(40℃) 12 表2 误差方差等同性的 Levene 检验a 因变量:适宜的条件 F df1 df2 Sig. 1.367 8 27 .255 检验零假设,即在所有组中因变量的误差方差均相等。 a. 设计 : 截距 + 原料 + 温度 + 原料 * 温度 表3 描述性统计量 因变量:适宜的条件 原料 温度 均值 标准 偏差 N A1 B1(30℃) 34.50 12.583 4 B2(35℃) 18.25 7.274 4 B3(40℃) 18.00 8.641 4 总计 23.58 11.958 12 A2 B1(30℃) 49.00 7.874 4 B2(35℃) 37.50 4.203 4 B3(40℃) 15.50 5.972 4 总计 34.00 15.562 12 A3 B1(30℃) 45.25 8.016 4 B2(35℃) 46.00 7.071 4 B3(40℃) 27.00 6.055 4 总计 39.42 11.196 12 总计 B1(30℃) 42.92 10.900 12 B2(35℃) 33.92 13.413 12 B3(40℃) 20.17 8.167 12 总计 32.33 14.313 36 表4 主体间效应的检验 因变量:适宜的条件 源 III 型平方和 df 均方 F Sig. 偏 Eta 方 非中心 参数 观测到的幂b 校正模型 5513.500a 8 689.187 11.233 .000 .769 89.867 1.000 截距 37636.000 1 37636.000 613.445 .000 .958 613.445 1.000 原料 1554.167 2 777.083 12.666 .000 .484 25.332 .993 温度 3150.500 2 1575.250 25.676 .000 .655 51.351 1.000 原料 * 温度 808.833 4 202.208 3.296 .025 .328 13.184 .766 误差 1656.500 27 61.352 总计 44806.000 36 校正的总计 7170.000 35 a. R 方 = .769(调整 R 方 = .701) b. 使用 alpha 的计算结果 = .05 表5 参数估计 因变量:适宜的条件 参数 B 标准 误差 t Sig. 95% 置信区间 偏 Eta 方 非中心 参数 观测到的幂a 下限 上限 截距 27.000 3.916 6.894 .000 18.964 35.036 .638 6.894 1.000 [原料=1] -9.000 5.539 -1.625 .116 -20.364 2.364 .089 1.625 .347 [原料=2] -11.500 5.539 -2.076 .048 -22.864 -.136 .138 2.076 .517 [原料=3] 0b . . . . . . . . [温度=1] 18.250 5.539 3.295 .003 6.886 29.614 .287 3.295 .888 [温度=2] 19.000 5.539 3.430 .002 7.636 30.364 .304 3.430 .911 [温度=3] 0b . . . . . . . . [原料=1] * [温度=1] -1.750 7.833 -.223 .825 -17.821 14.321 .002 .223 .055 [原料=1] * [温度=2] -18.750 7.833 -2.394 .024 -34.821 -2.679 .175 2.394 .636 [原料=1] * [温度=3] 0b . . . . . . . . [原料=2] * [温度=1] 15.250 7.833 1.947 .062 -.821 31.321 .123 1.947 .467 [原料=2] * [温度=2] 3.000 7.833 .383 .705 -13.071 19.071 .005 .383 .066 [原料=2] * [温度=3] 0b . . . . . . . . [原料=3] * [温度=1] 0b . . . . . . . . [原料=3] * [温度=2] 0b . . . . . . . . [原料=3] * [温度=3] 0b . . . . . . . . a. 使用 alpha 的计算结果 = .05 b. 此参数为冗余参数,将被设为零。 估算边际均值 表6 1. 总均值 因变量:适宜的条件 均值 标准 误差 95% 置信区间 下限 上限 32.333 1.305 29.655 35.012 2. 原料 表7 估计 因变量:适宜的条件 原料 均值 标准 误差 95% 置信区间 下限 上限 A1 23.583 2.261 18.944 28.223 A2 34.000 2.261 29.361 38.639 A3 39.417 2.261 34.777 44.056 表8 成对比较 因变量:适宜的条件 (I) 原料 (J) 原料 均值差值 (I-J) 标准 误差 Sig.a 差分的 95% 置信区间a 下限 上限 A1 A2 -10.417* 3.198 .003 -16.978 -3.856 A3 -15.833* 3.198 .000 -22.394 -9.272 A2 A1 10.417* 3.198 .003 3.856 16.978 A3 -5.417 3.198 .102 -11.978 1.144 A3 A1 15.833* 3.198 .000 9.272 22.394 A2 5.417 3.198 .102 -1.144 11.978 基于估算边际均值 *. 均值差值在 .05 级别上较显著。 a. 对多个比较的调整: 最不显著差别(相当于未作调整)。 表9 单变量检验 因变量:适宜的条件 平方和 df 均方 F Sig. 偏 Eta 方 非中心 参数 观测到的幂a 对比 1554.167 2 777.083 12.666 .000 .484 25.332 .993 误差 1656.500 27 61.352 F 检验 原料 的效应。该检验基于估算边际均值间的线性独立成对比较。 a. 使用 alpha 的计算结果 = .05 表10 3. 温度 估计 因变量:适宜的条件 温度 均值 标准 误差 95% 置信区间 下限 上限 B1(30℃) 42.917 2.261 38.277 47.556 B2(35℃) 33.917 2.261 29.277 38.556 B3(40℃) 20.167 2.261 15.527 24.806 表11 成对比较 因变量:适宜的条件 (I) 温度 (J) 温度 均值差值 (I-J) 标准 误差 Sig.a 差分的 95% 置信区间a 下限 上限 B1(30℃) B2(35℃) 9.000* 3.198 .009 2.439 15.561 B3(40℃) 22.750* 3.198 .000 16.189 29.311 B2(35℃) B1(30℃) -9.000* 3.198 .009 -15.561 -2.439 B3(40℃) 13.750* 3.198 .000 7.189 20.311 B3(40℃) B1(30℃) -22.750* 3.198 .000 -29.311 -16.189 B2(35℃) -13.750* 3.198 .000 -20.311 -7.189 基于估算边际均值 *. 均值差值在 .05 级别上较显著。 a. 对多个比较的调整: 最不显著差别(相当于未作调整)。 表12 单变量检验 因变量:适宜的条件 平方和 df 均方 F Sig. 偏 Eta 方 非中心 参数 观测到的幂a 对比 3150.500 2 1575.250 25.676 .000 .655 51.351 1.000 误差 1656.500 27 61.352 F 检验 温度 的效应。该检验基于估算边际均值间的线性独立成对比较。 a. 使用 alpha 的计算结果 = .05 表13 4. 原料 * 温度 因变量:适宜的条件 原料 温度 均值 标准 误差 95% 置信区间 下限 上限 A1 B1(30℃) 34.500 3.916 26.464 42.536 B2(35℃) 18.250 3.916 10.214 26.286 B3(40℃) 18.000 3.916 9.964 26.036 A2 B1(30℃) 49.000 3.916 40.964 57.036 B2(35℃) 37.500 3.916 29.464 45.536 B3(40℃) 15.500 3.916 7.464 23.536 A3 B1(30℃) 45.250 3.916 37.214 53.286 B2(35℃) 46.000 3.916 37.964 54.036 B3(40℃) 27.000 3.916 18.964 35.036 "在此之后"检验 原料 同类子集 表14 适宜的条件 Student-Newman-Keulsa,b 原料 N 子集 1 2 A1 12 23.58 A2 12 34.00 A3 12 39.42 Sig. 1.000 .102 已显示同类子集中的组均值。 基于观测到的均值。 误差项为均值方 (错误) = 61.352。 a. 使用调和均值样本大小 = 12.000。 b. Alpha = .05。 温度 同类子集 表15 适宜的条件 Student-Newman-Keulsa,b 温度 N 子集 1 2 3 B3(40℃) 12 20.17 B2(35℃) 12 33.92 B1(30℃) 12 42.92 Sig. 1.000 1.000 1.000 已显示同类子集中的组均值。 基于观测到的均值。 误差项为均值方 (错误) = 61.352。 a. 使用调和均值样本大小 = 12.000。 b. Alpha = .05。 分布-级别图 结果分析:通过两因素方差分析得:表1中为原始数据综合信息,列出了个因变量,变量值标签和样本含量等;从表2得:P=0.255,表明P值<0.05,方差是齐次性显著;表4给出了方差分析表,表的左上标注了研究对象,为适宜的条件。偏差来源和偏差平方和:Sig 进行F检验的p值。p≤0.05,由此得出“温度”和“原料”对因变量“适宜的条件”在0.05水平上是有显著性差异的。不同原料(A)对“适宜的条件”的均方是777.083,偏Eta方为0.484,F值为,12.666,显著性水平是0.000,即p<0.05存在显著性差异;不同温度(B)对粘虫历期的均方是1575.250,F值为18.575,偏Eta方为0.655,显著性水平是0.000,即p<0.05存在显著性差异;不同原料和不同温度(a*b)共同对“适宜的条件”的均方是202.208,F值为3.296,偏Eta方为0.328,显著性水平是0.,025,即p﹤0.05存在显著性差异;从表8中可以看出:原料A1与A2、A1和A3之间都有显著性差异;原料A2与A1、A3和A1之间都有显著性差异;原料A2与A3、A3和A2之间都有无显著性差异;从分布-级别图可以看出,不同的原料在不同的温度下的适宜的条件不同。 (六)、实验总结分析: 1、两因素方差分析主要用来检测两个自变量之间的是否有显著的影响,检测不同组合之间哪种最显著,两因素方差分析有两种类型:一个是无交互作用的两因素方差分析,另一个是有交互作用的两因素方差分析; 2、方差分析的基本思想是,将观察值之间的总变差分解为由所研究的因素引起的变差和由随机误差项引起的变差,通过对这两类变差的比较做出接受或拒绝原假设的判断; 3、均数两两比较方法的优缺点分析:LSD法:最灵敏,会犯假阳性错误;Sidak法:比LSD法保守;Bonferroni法:比Sidak法更为保守一些;Scheffe法:多用于进行比较的两组间样本含量不等时;Dunnet法:常用于多个试验组与一个对照组的比较;S-N-K法:寻找同质亚组的方法;Turkey法:最迟钝,要求各组样本含量相同;Duncan法:与Sidak法类似; 4、根据方差分析的结果,还不能推断四个总体均数两两之间是否相等。如果要进一步推断任两个总体均数是否相同,应作两两比较; 5、方差分析的主要步骤包括:建立假设;计算F检验值;根据实际值与临界值的比较做出决策,在方差分析中,当拒绝H0时表示至少有两个均值有显著差异。但要知道哪些均值之间有显著差异还需要借助于多重比较的方法,例如LSD方法; 6、方差分析用于两个及两个以上样本均数差别的显著性检验。 由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素; 7、方差分析中的基本假设是,来自各个总体的数据都服从正态分布,相互独立,且有相同的方差; 8、通过此次实验,更加熟悉了SPSS软件的应用,学习了两因素方差分析检验,了解方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量,从而对统计数据进行分析。 教师评语及评分: 签名: 年 月 日 17- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 因素 方差分析 检验
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文