自适应惯性权重的粒子群优化算法_张渊博.pdf
《自适应惯性权重的粒子群优化算法_张渊博.pdf》由会员分享,可在线阅读,更多相关《自适应惯性权重的粒子群优化算法_张渊博.pdf(8页珍藏版)》请在咨信网上搜索。
1、基金项目:国家自然科学基金(62003152);江苏省研究生科研创新计划项目(2020XKT081)收稿日期:2021-04-28 修回日期:2021-07-25 第 40 卷 第 4 期计 算 机 仿 真2023 年 4 月 文章编号:1006-9348(2023)04-0350-08自适应惯性权重的粒子群优化算法张渊博,邹德旋,张春韵,杜星瀚(江苏师范大学电气工程及自动化学院,江苏 徐州 221116)摘要:针对粒子群优化算法容易陷入局部极值、进化后期的收敛速度慢和精度低等问题,提出自适应惯性权重的粒子群优化算法。算法采用自适应更新惯性权重,添加影响算子,并通过惯性权重自适应调整学习因子,
2、然后加入随机局部搜索策略;最后使用测试函数,通过和 3 种优化算法进行 30 次重复实验。结果表明,提出的算法具有更好的全局收敛能力,且收敛精度、和稳定性都有明显的提升。关键词:粒子群优化算法;自适应惯性权重;影响算子;学习因子;测试函数;收敛精度中图分类号:TP301 文献标识码:BParticle Swarm Optimization Algorithmwith Adaptive Inertial WeightZHANG Yuan-bo,ZOU De-xuan,ZHANG Chun-yun,DU Xing-han(School of Electrical Engineering and A
3、utomation,Jiangsu Normal University,Xuzhou Jiangsu 221116,China)ABSTRACT:In order to solve the problems of particle swarm optimization(PSO),such as easy to fall into localextremum,slow convergence speed and low accuracy in the later stage of evolution,an adaptive inertia weight PSOalgorithm is propo
4、sed.The algorithm adaptively updated the inertia weight,added the influence operator,adaptivelyadjusted the learning factor through the inertia weight,and then added the random local search strategy.Finally,thetest functions and three optimization algorithms were used for 30 repeated experiments.The
5、 results show that the pro-posed algorithm has better global convergence ability,and the convergence accuracy and stability are significantly im-proved.KEYWORDS:Particle swarm optimization algorithm;Adaptive inertia weight;Influence operator;Learning factor;Test function;Convergence accuracy1 引言群智能优
6、化算法1是模拟昆虫、兽群、鸟群和鱼群的群体行为,这些群体按照一种合作的方式寻找食物,群体中的每个成员通过学习它自身的经验和其它成员的经验来不断地改变搜索的方向。群体智能优化算法的突出特点就是利用了种群的群体智慧进行协同搜索,从而在解空间内找到最优解。其中粒子群算法结构简单、参数少、容易实现,收敛速度较快。该算法已成功应用于许多领域如图像分割2、路径规划3、车间调度4、系统优化5。尽管粒子群优化算法优势众多,但粒子群算法容易陷入早熟收敛而找不到最优解,存在收敛后期种群多样性较差、速度较慢。因此学者们针对局部收敛、不变性、稳定性、参数设置和拓扑结构进行研究,对粒子群算法改进,并提出了许多算法的变体
7、。文献6提出了一种基于粒子群算法的自适应变异差分进化算法,在迭代早期,算法有效地利用改进的DE/rand/1 突变策略来探索较好的区域,从而提高逃离局部最优的能力。在进化的后期,利用粒子群算法的变异策略有效地加快了收敛速度。文献7采用动态自适应惯性加权因子,并将遗传算法(Genetic Algorithm,GA)8相关算子引入粒子群算法中,通过交叉和 n 点变异算子自适应地选择满足遗传算法选择准则且选择概率随时间变化的粒子群,更新其位置。文献9提出全息粒子群算法采用了整体结构和自相似结构。将不同的粒子分为不同的组和级,组内之间粒子进行信息交换,用一组中最好的粒子进行不同级粒子的信息交换。该结构
8、提高了粒子群算法的速度和精度。廖星等10运053用线性递减惯性权重与正态随机数的随机惯性权重提出了一种自适应惯性权重粒子群优化算法,并引入压缩因子与变学习因子减小惯性权重的影响,最后使用 GPU 并行的运行算法,加快运行速度。李龙澍等11针对 PSO 算法易陷入局部极值的缺陷,提出了一种新的自适应惯性权重混沌 PSO 算法(New AdaptiveInertial Weight Chaotic Particle Swarm Optimizatio,CPSO-NAIW)。该算法首先采用新的权重自适应方法,通过粒子与群体极值位置距离对权重进行调整,使权重的调整与粒子的状态位置状态信息相结合,然后采
9、用基于混沌优化摆脱局部极值的方法,在算法陷入局部极值时,对群体极值进行混沌调整,以使各个粒子在追逐不同群体极值位置进行更新时,可以改变寻优轨迹,提高了算法摆脱局部极值的能力。吴凡等12提出一种惯性权重曲线递增策略的改进算法(Curve In-crement Particle Swarm Optimization,CIPSO),有效避免早熟问题,在处理“维度灾难”问题上,寻优性能更强,且具备良好的平衡全局与局部寻优性能。以上现有方法都通过自适应权重平衡全局与局部寻优能力,但对于多峰测试函数,算法仍陷入局部最优。为了使算法在进化前期锁定较好区域,在进化后期提高局部搜索能力,提出一种自适应惯性权重的
10、粒子群优化算法(Stochastic Inertial-Weighted Particle Swarm Optimization,AI-WPSO),算法主要是对惯性权重、学习因子进行改进,并加入局部搜索策略。最后通过标准测试函数与其它算法对比,验证了该算法的有效性。2 基本粒子群优化算法粒子群优化算法是由 Kennedy13和 Eberhart14在 1995年提出的一种启发式的群体智能算法,是一种无梯度优化算法,其灵感来自于移动生物的社会行为,如鸟群的移动,来达到同样的目标。运动是基于粒子在搜索空间中最佳的位置(即局部最好的位置),以及整个搜索空间中最佳的位置群(即全局最佳)。假设搜索空间有
11、 d 维(d=1,2,D)每个粒子 i 的 位 置 和 速 度 分 别 用 Vi=vid,viD(),Xi=xid,xiD()表示。对于每次迭代或时间步长 t,速度被用来更新的下一个位置,每个粒子的计算公式为vid(t+1)=wvid(t)+c1r1(pgd-xid(t)+c2r2(pid-xid(t)(1)xid(t+1)=xid(t)+vid(t+1)(2)对于每个粒子 i 和维数 d,通过以上方程(1)式更新粒子的速度 vid和(2)式更新粒子的位置 xid。在式(1)中,w 是动量的权重,它影响到前一个速度对下一个粒子运动的影响程度。群体的最佳位置记为 pgd,用常数 c1加权,c1为
12、个体学习因子。c2为社会学习因子,对每个粒子 pid的最佳位置加权。r1、r2为 r(0,1)的均匀随机数样本。3 自适应权重粒子群优化算法避免速度向量使粒子发散导致后期收敛变慢和低精度问题,胡旺15提出一种更简化的粒子群优化算法(SimplifiedParticle Swarm Optimization,SPSO),舍去速度项,简化为xt+1id=xtid+c1r1(pid-xtid)+c2r2(pgd-xtid)(3)本文为了平衡算法的全局搜索与局部搜索能力并加快搜索速度,将惯性权重 与学习因子(c,c2)和随机数(r1,r2)进行改进,提出一种自适应惯性权重的粒子群优化算法,更新公式为x
13、t+1id=tixtid+c1e(pgd-xtid)+c2(1-e)(pid-xtid)(4)e=tT(5)其中 T 为最大迭代次数,t 为当前迭代次数;pgd为粒子全局最优解,pid为粒子个体最优解,c1和 c2分别为个体学习因子和社会学习因子,ti为第 i 个粒子 t 代时的惯性权重,e 为影响因子。影响因子根据迭代次数来改变个体极值和全局极值对粒子位置的影响。前期受个体极值影响大,使粒子快速找到相对较好的位置,寻优中期,一部分粒子向全局最优值靠近,一部分粒子继续搜寻更好的位置点,迭代次数达到后期时,所有粒子向全局最优值靠近,使粒子得到更好的收敛。固定的学习因子,在处理复杂问题时,很有可能
14、陷入局部最优解;因此,本文根据惯性权重自适应的更新认知和社交因子,更新公式为c1=c_start+(c_start-c_end)cos(exp(ti-1)+1)(6)c2=c_start-(c_start-c_end)cos(exp(ti-1)+1)(7)其中 c_start 和 c_end 分别设置为 1.5 和 1。当惯性权重减小时,说明上一代的粒子位置不理想,在更新下一代粒子时应保留粒子少部分的信息,同时应该适量增加认知因子和社交因子,使粒子向自身历史最佳位置和群体历史最佳位置逼近。此学习因子加入余弦函数,能够产生振荡,使粒子更好的寻优。3.1 自适应惯性权重惯性权重 起到了一个平衡全局
15、搜索能力和局部搜索能力的作用恰当的 值可以提高算法性能,提高寻优能力,减少迭代次数。本文运用双曲线先下降后上升的特性和高斯函数与目标函数值相结合,提出自适应惯性权重,表示为=(f(x)(t)(8)=e(f_avgf(x)2-22(9)=a2+(-50+100(tT)b2(10)其中 f(x)为粒子的目标函数值;f_avg 为所有粒子的平均目153标函数值;为方差,a,b 为双曲线参数,分别为 0.3,50,取值范围为0.3,1.042。目标函数值越小说明粒子适应度越大。当粒子适应度小于平均适应度值时,说明粒子处于较差的位置,惯性权重取得较小值,使下次粒子更新时获得前代粒子较少信息;当粒子适应度
16、值大于平均适应度值时,粒子处于好的位置,惯性权重取得较大值,使下次粒子更新时获得较多前代粒子信息。然后通过双曲线先下降后上升的特性,使粒子寻优前期有很强的全局寻优能力,中期有较强的局部寻优能力,加快收敛,后期增强全局搜索能力,使粒子有能力跳出局部最优,提高寻优精度。图 1 为一个粒子随进化次数的惯性权重分布,整体上呈现先下降后上升趋势,进化前期,粒子通过自己的适应度值与所有粒子适应度值的平均值的比值得到自己的惯性权重,使每个粒子搜寻到适合自己的区域;进化中期,惯性权重较小,粒子可以快速达到最优解;进化后期,粒子的惯性权重较大,有利于粒子逃出局部最优。图 1 惯性权重分布3.2 随机局部搜索本文
17、为了增加最优解的精确度,引入交叉变异操作,随机生成粒子的方向向量,根据粒子与粒子中心的平均距离,进行随机局部搜索,随机局部搜索的公式为xcid=randxjd+(1-rand)xkd(11)xqid=xcid+(ui-li)(12)xni,d=xqi,d+Ui(13)=1KKi=1i(14)Ui=RiR21+R2n(i=1,2,n)(15)其中 i,j,k 分别表示为第 i 个、第 j 个、第 k 个粒子,且 ijk,xcid为交叉后得到新粒子,xqid为突变后的粒子,为均匀分布在-0.01,0.01之间,ui、li分别为第 i 个粒子迭代过程中空间中的最大值与最小值,xni,d为逃脱局部最优
18、产生的新粒子,为距离中心位置最近的 K 个粒子的平均距离,Ri(i=1,m)为随机生成的方向向量。算法实现步骤如下:Step1 设置最大迭代次数、种群数量、初始化种群位置、学习因子;Step2 计算出每个粒子的适应度值;Step3 找出个体极值 Pbest与全局极值 Gbest;Step4 根据式(6-10)计算学习因子与惯性权重;Step5 根据式(11-15)进行随机局部搜索更新出新的粒子;Step6 通过适应度函数计算两种粒子的适应度值,更新个体极值 Pbest和全局极值 Gbest。Step7 判断是否满足终止条件,若满足执行 Step8,否则转到 Step4。Step8 输出全局极值
19、 Gbest。算法流程图如图 2。图 2 算法流程图4 仿真研究仿真的运行环境的内存为 16G,Intel i5-9300H CPU2.4GHz,Windows 10 操作系统,算法采用 Matlab R2019b 实现。为了验证算法的合理性,分别在 30 维和 100 维下运行30 次进行实验对比与分析。最后对算法的局部搜索进行验证。4.1 测试函数为了检验算法 AIWPSO 的有效性,本文用 16 个标准测试函数进行仿真对比,其中 f3、f4、f8、f10-f16为单峰测试函数,253f1、f2、f5、f6、f7、f9为多峰函数,f7为病态的二次函数,全局极小点被无数的局部极小点所围绕,因
20、此很难找到最优解。本文的测试函数见表 1。为了更好统一观测算法搜寻测试函数的最优解。以下测试函数可能在形式上略有变化,但并不影响其测试效果,测试函数的理论解都为 0。表 1 测试函数函数名函数表达式定义域函数名函数表达式定义域Ackleys Pathf1(x)=-20exp-0.2130ni=1x2i|-exp130ni=1cos 2xi()+20+e-32,32Rastriginf9(x)=ni=1x2i-10cos(2xi)+10-5.12,5.12Alpinef2(x)=ni=1|xisin(xi)+0.1xi|-10,10Schwefels 1.2f10(x)=ni=1ij=1xj()
21、2-100,100Axis ParallelHyperellipsoidf3(x)=ni=1ix2i-5.12,5.12Schwefels2.21f11(x)=max|xi|,1 i 30-100,100De Jongs(noise)f4(x)=ni=1ix4i-1.28,1.28Schwefels2.22f12(x)=ni=1|xi|+ni=1|xi|-10,10Girewangkf5(x)=14000ni=1x2i-ni=1xii|+1-600,600Spheref13(x)=ni=1x2i-100,100InvertedCosine Wavef6(x)=-n-1i=1exp-(x2i+x
22、2i+1+0.5xixi+1)8()(cos4x2i+x2i+1+0.5xixi+1()+n-1-100,100Sum ofDifferent Powerf14(x)=ni=1|xi|(i+1)-1,1Pathologicalf7(x)=n-1i=10.5+sin2(100 x2i+x2i+1)-0.51+0.001(x2i-2xixi+1+x2i+1)2|-100,100Xin-SheYang 1f15(x)=ni=1rand0,1)|xi|i-5,5Quarticf8(x)=ni=1ix4i+rand0,1)-1.28,1.28Zakharovf16(x)=ni=1x2i+ni=10.5i
23、xi()2+ni=10.5ixi()4-5,10表 2 四种算法参数设置算法c1c2minmaxmTPSO220.80.840100CPSO220.40.940100CIPSO1.51.5-240100AIWPSO-401004.2 参数设置与实验结果分析设计实验时最重要的环节是合理设置参数和仿真环境,如此才能保证算法比较过程的公平性与公正性。表 2 为四种算法参数设置。4.3 实验结果将本文算法,与近三年新算法 CPSO、CISPO 和基本粒子群算法 PSO 在 30 维下进行仿真对比。算法的实验数据对比结果见表 3。表 3 四种算法搜索 30 维函数结果函数算法最小值平均值标准差函数算法最
24、小值平均值标准差f1AIWPSO8.88E-168.88E-160.00E+00f9AIWPSO0.00E+000.00E+000.00E+00CPSO1.17E-131.74E-114.15E-11CPSO6.97E-401.50E-355.21E-35CIPSO2.94E-158.59E-149.70E-14CIPSO9.31E-497.51E-383.05E-37PSO6.19E+007.91E+009.41E-01PSO1.44E+021.86E+022.35E+01f2AIWPSO1.80E-801.40E-714.83E-71f10AIWPSO8.26E-834.05E-712.1
25、9E-70353函数算法最小值平均值标准差函数算法最小值平均值标准差CPSO4.19E-314.58E-271.08E-26CPSO3.41E-131.10E-111.53E-11CIPSO1.14E-354.70E-326.03E-32CIPSO3.39E-137.74E-126.82E-12PSO4.74E+001.18E+013.65E+00PSO6.28E-032.17E-011.64E-01f3AIWPSO3.42E-1681.97E-1385.16E-137f11AIWPSO1.79E-811.06E-693.25E-69CPSO4.10E-391.25E-306.87E-30CP
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自适应 惯性 权重 粒子 优化 算法 渊博
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。