相似三角形的性质和判定同步练习.doc
《相似三角形的性质和判定同步练习.doc》由会员分享,可在线阅读,更多相关《相似三角形的性质和判定同步练习.doc(2页珍藏版)》请在咨信网上搜索。
相似三角形的性质和判定同步练习 一、选择题 1.如图1,△OED∽△OCB,且OE=6,EC=21,则△OCB与△OED的相似比是( ) A. B. C. D. 2.如图2,点E,F分别在矩形ABCD的边DC,BC上,∠AEF=90°,∠AFB=2∠DAE=72°,则图中甲、乙、丙三个三角形中相似的是( ) A.只有甲与乙 B.只有乙与丙 C.只有甲与丙 D.甲与乙与丙 3、如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使ΔABE和ΔACD相似的是 ( ) A. ∠B=∠C B. ∠ADC=∠AEB C. BE=CD,AB=AC D. AD∶AC=AE∶AB .4、如图,在正方形网格上有6个斜三角形:①ΔABC,②ΔBCD,③ΔBDE,④ΔBFG,⑤ΔFGH,⑥ΔEFK.其中②~⑥中,与三角形①相似的是( ) (A)②③④ (B)③④⑤ (C)④⑤⑥ (D)②③⑥ 5.已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有( ) A.1对 B.2对 C.3对 D.4对 6.对于下列说法:( ) (1)相似且有一边为公共边的两个三角形全等;(2)相似且面积相等的两个三角形全等;(3)相似且周长相等的两个三角形全等.其中说法正确的有( ) A.0个 B.1个 C.2个 D.3个[来源:Z_xx_k.Com] 7.若△ABC∽△A`B`C`,则相似比k等于( ) A B C A B C D 第9题图 A.A`B`:AB B.∠A: ∠A` C.S△ABC:S△A`B`C` D.△ABC周长:△A`B`C`周长[来源:学§科§网Z§X§X§K] 8.把一个三角形改成和它相似的三角形,如果面积扩大到原来的100倍,那么边长扩大到原来的( ) A.10000倍 B.10倍 C.100倍 D.1000倍] 9.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( ) 10.如图,已知:AD是Rt△ABC斜边BC上的高线,DE是Rt△ADC斜边AC上的高线,如果DC:AD=1:2,,那么 等于( ) A 、4a B、9a C、1 6a D、25a 二填空题 11. 如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则该平行四边形的面积是_____________ A B E F C D 12.如图:在平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使⊿CBF∽⊿CDE,则BF的长为________ 13、如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴 上(C与A不重合),当点C的坐标为____________或_____________ 时,使得由点B、O、C组成的三角形与ΔAOB相似(至少写出两个满足条件的点的坐标) 14.△ABC中,AB=12,AC=15,为AB上一点,且,在AC上取一点,使以A、D、E为顶点的三角形和△ABC相似,则AE等于 _________________ 15.如图,把一个矩形纸片沿和的中点连线对折,要使矩形与原矩形相似,则原矩形长与宽之比为 。 三、平心静气,展示智慧 16、如图,四边形ABCD是平行四边形,AE⊥BC于E,AF⊥CD于F. (1)ΔABE与ΔADF相似吗?说明理由.[来源:Z_xx_k.Com] (2)ΔAEF与ΔABC相似吗?说说你的理由. 17.已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证: ⊿ADQ∽⊿QCP. 18.已知:如图,正方形ABCD中,E为BD上一点,AE的延长线交CD于点F,交BC的延长线于点G,连结EC。(1)求证:△ECF∽△EGC;(2)若EF=,FG=,求AE的长。 C A B D E F G (第18题图) 19.如图8,AD是△ABC角平分线,试判断是否成立? 20. ⊿ABC中,AD、CE是中线, ∠BAD=∠BCE,请猜想⊿ABC的形状,并证明. 21、已知:如图,CE是RtΔABC的斜边AB上的高,BG⊥AP. 求证:CE2=ED·EP.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相似 三角形 性质 判定 同步 练习
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文