一元二次方程导学案.doc
《一元二次方程导学案.doc》由会员分享,可在线阅读,更多相关《一元二次方程导学案.doc(4页珍藏版)》请在咨信网上搜索。
课题 21.1 一元二次方程 授课人 徐庆宏 教 学 目 标 知识技能 1.理解一元二次方程的概念; 2.掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,确定出二次项系数、一次项系数和常数项; 3.理解一元二次方程的根的意义,能够运用代入法检验根的正确性. 数学思想 在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性. 问题解决 通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移得到一元二次方程的概念. 情感态度 通过用数学知识解决实际问题的思想激发学生的学习热情和积极性. 教学 重点 能建立一元二次方程模型,把一元二次方程整理成一般形式 教学 难点 把实际问题转化为一元二次方程的模型 授课 类型 新授课 课时1 教具 多媒体 一元二次方程导学案 教学活动 教学 步骤 师生活动 设计意图 回顾 学生完成下列题目,教师指导学生复习一元一次方程的相关知识: 一元一次方程的知识: 1.一元一次方程中的“一元”是指__1个未知数__,“一次”是指__未知数的次数是1__,一元一次方程左右两边都是__整式__的形式. 2.一元一次方程的一般形式是__ax+b=0(a,b是常数,且a≠0)__. 3.什么是一元一次方程的根? 能使一元一次方程左右两边相等的未知数的值 通过回顾一元一次方程的概念,理解“元”和“次”的含义,有助于学生类比一元二次方程的概念,从而充满探究的欲望和浓厚的兴趣 活动 一: 创设 情境 导入 新课 【课堂引入】 问题1:有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形? 分析:设切去的正方形的边长为x cm,则盒底的长为________________,宽为_____________,得方程 _____________________________ 整理得 _____________________________ ② 问题 2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛? 分析:全部比赛的场数为___________ 设应邀请x个队参赛,每个队要与其他_________个队各赛1场,所以全部比赛共_________________场。列方程 ____________________________ 化简整理得 ____________________________ ③ 老师帮助学生理解题意,学生小组再讨论交流,从而正确列出满足条件的方程. 请口答下面问题: (1)方程①②③中未知数的个数各是多少?___________ (2)它们的最高次数分别是几次?_________ 方程①②③的共同特点是: 这些方程的两边都是_________,只含有_______未知数(一元),并且未知数的最高次数是_____(二次)的方程. 1.一元二次方程的定义:__________________________________________ __________________________________________________________. 2. 一元二次方程的一般形式:____________________________ 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中ax2是____________,_____是二次项系数;bx是__________,_____是一次项系数;_____是常数项。(注意:二次项系数、一次项系数、常数项都要包含它前面的符号。二次项系数a╪0是一个重要条件,不能漏掉) 3一元二次方程解的概念 能使方程左右两边相等的未知数的值就叫一元二次方程的解。一元二次方程的解也叫做根 由实际问题入手,设计情景问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型. 活动 三: 开放 训练 体现 应用 【应用举例】例1 将方程3x(x-1)=5(x+2)化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项. 师生活动:学生自主解答,教师巡视、指导、点评. 提示:原方程化为3x2-8x-10=0,二次项系数为3,一次项系数为-8,常数项为-10. 变式练习:将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项. 此题的设置目的在于加深对一元二次方程一般形式的理解,同时为以后方程的解法打下基础. 【拓展提升】 例2 已知关于x的方程(2a-4)x2-2x+a=0,在什么条件下,此方程为一元一次方程?在什么条件下,此方程为一元二次方程? 例3 已知x=2是一元二次方程x2+mx+2=0的一个根,求m的值. 学生自主思考,教师做好指导,最后由个别学生进行课堂解答,教师给予评价和辅导.教师指出解答问题的易错点和方法应用. 例2是区分两类方程的异同,同时提示注意a的取值范围. 活动 四: 课堂 总结 反思 【达标测评】 1.若方程mx2-2x+m=0是关于x的一元二次方程,则(C) A.m为任意实数 B.m=0 C.m≠0 D.m=0或m=1 2.下列方程中,不含一次项的是(D) A.3x2-5=2x B.16x=x2 C.x(x-7)=0 D.(x+5)(x-5)=0 3.若关于x的一元二次方程ax2+bx+c=0有一个根为1,则a+b+c=__0__;若a-b+c=0,则方程必有一根为__-1__. 4.一元二次方程2x2=1-4x的二次项系数、一次项系数和常数项之和为__5__. 5.若关于x的方程(k-1)x|k|-1-x-2=0是一元二次方程,求k的值. 学生进行当堂检测,完成后,教师进行批阅、点评、讲解. 利用典型的练习题进一步巩固所学新知,同时检测学习效果,做到“堂堂清”. 1.课堂总结: (1)本节课主要学习了哪些知识?学习了哪些数学思想和方法? (2)本节课还有哪些疑惑?说一说! 2.布置作业: 教材第4页练习第1,2.3.4.5.6.7题. 注重课堂小结,激发学生参与的主动性,为每一个学生的发展与表现创造机会.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 导学案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文