等边三角形(二).doc
《等边三角形(二).doc》由会员分享,可在线阅读,更多相关《等边三角形(二).doc(8页珍藏版)》请在咨信网上搜索。
§12.3.2 等边三角形(二) 教学目标 (一)教学知识点 1.探索──发现──猜想──证明直角三角形中有一个角为30°的性质. 2.有一个角为30°的直角三角形的性质的简单应用. (二)能力训练要求 1.经历“探索──发现──猜想──证明”的过程,引导学生体会合情推理与演绎推理的相互依赖和相互补充的辩证关系. 2.培养学生用规范的数学语言进行表达的习惯和能力. (三)情感与价值观要求 1.鼓励学生积极参与数学活动,激发学生的好奇心和求知欲. 2.体验数学活动中的探索与创新、感受数学的严谨性. 教学重点 含30°角的直角三角形的性质定理的发现与证明. 教学难点 1.含30°角的直角三角形性质定理的探索与证明. 2.引导学生全面、周到地思考问题. 教学方法 探索发现法. 教具准备 两个全等的含30°角的三角尺; 多媒体课件; 投影仪. 教学过程 Ⅰ.提出问题,创设情境 [师]我们学习过直角三角形,今天我们先来看一个特殊的直角三角形,看它具有什么性质.大家可能已猜到,我让大家准备好的含30°角的直角三角形,它有什么不同于一般的直角三角形的性质呢? 问题:用两个全等的含30°角的直角三角尺,你能拼出一个怎样的三角形?能拼出一个等边三角形吗?说说你的理由. 由此你能想到,在直角三角形中,30°角所对的直角边与斜边有怎样的大小关系?你能证明你的结论吗? Ⅱ.导入新课 (让学生经历拼摆三角尺的活动,发现结论,同时引导学生意识到,通过实际操作探索出来的结论,还需要给予证明) [生]用含30°角的直角三角尺摆出了如下两个三角形. 其中,图(1)是等边三角形,因为△ABD≌△ACD,所以AB=AC,又因为Rt△ABD中,∠BAD=60°,所以∠ABD=60°,有一个角是60°的等腰三角形是等边三角形. [生]图(1)中,∠B=∠C=60°,∠BAC=∠BAD+∠CAD=30°+30°=60°,所以∠B=∠C=∠BAC=60°,即△ABC是等边三角形. [师]同学们从不同的角度说明了自己拼成的图(1)是等边三角形.由此你能得出在直角三角形中,30°角所对的直角边与斜边的关系吗? [生]在直角三角形中,30°角所对直角边是斜边的一半. [师]我们仅凭实际操作得出的结论还需证明,你能证明它吗? [生]可以,在图(1)中,我们已经知道它是等边三角形,所以AB=BC=AC.而∠ADB=90°,即AD⊥BC.根据等腰三角形“三线合一”的性质,可得BD=DC=BC.所以BD=AB,即在Rt△ABD中,∠BAD=30°,它所对的边BD是斜边AB的一半. [师生共析]这位同学能结合前后知识,把问题思路解释得如此清晰,很了不起.下面我们一同来完成这个定理的证明过程. 定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 已知:如图,在Rt△ABC中,∠C=90°,∠BAC=30°. 求证:BC=AB. 分析:从三角尺的摆拼过程中得到启发,延长BC至D,使CD=BC,连接AD. 证明:在△ABC中,∠ACB=90°,∠BAC=30°,则∠B=60°. 延长BC至D,使CD=BC,连接AD(如下图) ∵∠ACB=60°, ∴∠ACD=90°. ∵AC=AC, ∴△ABC≌△ADC(SAS). ∴AB=AD(全等三角形的对应边相等). ∴△ABD是等边三角形(有一个角是60°的等腰三角形是等边三角形). ∴BC=BD=AB. [师]这个定理在我们实际生活中有广泛的应用,因为它由角的特殊性,揭示了直角三角形中的直角边与斜边的关系,下面我们就来看一个例题. (演示课件) [例5]右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,立柱BD、DE要多长? 分析:观察图形可以发现在Rt△AED与Rt△ACB中,由于∠A=30°,所以DE=AD,BC=AB,又由D是AB的中点,所以DE=AB. 解:因为DE⊥AC,BC⊥AC,∠A=30°,由定理知 BC=AB,DE=AD, 所以BD=×7.4=3.7(m). 又AD=AB, 所以DE=AD=×3.7=1.85(m). 答:立柱BC的长是3.7m,DE的长是1.85m. [师]再看下面的例题. [例]等腰三角形的底角为15°,腰长为2a,求腰上的高. 已知:如图,在△ABC中,AB=AC=2a,∠ABC=∠ACB=15°,CD是腰AB上的高. 求:CD的长. 分析:观察图形可以发现,在Rt△ADC中,AC=2a,而∠DAC是△ABC的一个外角,则∠DAC=15°×2=30°,根据在直角三角形中,30°角所对的边是斜边的一半,可求出CD. 解:∵∠ABC=∠ACB=15°, ∴∠DAC=∠ABC+∠BAC=30°. ∴CD=AC=a(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半). [师]下面我们来做练习. Ⅲ.随堂练习 (一)课本P56练习 Rt△ABC中,∠C=90°,∠B=2∠A,∠B和∠A各是多少度?边AB与BC之间有什么关系? 答案:∠B=60°,∠A=30°,AB=2BC. (二)补充练习 1.已知:如图,△ABC中,∠ACB=90°,CD是高,∠A=30°. 求证:BD=AB. 证明:在Rt△ABC中,∠A=30°, ∴BC=AB. 在Rt△BCD中,∠B=60°, ∴∠BCD=30°. ∴BD=BC. ∴BD=AB. 2.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段. 求证:其中一条是另一条的2倍. 已知:在Rt△ABC中,∠A=90°,∠ABC=2∠C,BD是∠ABC的平分线. 求证:CD=2AD. 证明:在Rt△ABC中,∠A=90°,∠ABC=2∠C, ∴∠ABC=60°,∠C=30°. 又∵BD是∠ABC的平分线, ∴∠ABD=∠DBC=30°. ∴AD=BD,BD=CD. ∴CD=2AD. Ⅳ.课时小结 这节课,我们在上节课的基础上推理证明了含30°的直角三角形的边的关系.这个定理是个非常重要的定理,在今后的学习中起着非常重要的作用. Ⅴ.课后作业 (一)课本P58─11、12、13、14题. (二)预习P60~P61,并准备活动课. 1.找出若干个成轴对称的汉字、英文字母、阿拉伯数字. 2.思考镜子对实物的改变. Ⅵ.活动与探究 在三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°. 过程:可以从证明“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半”.从辅助线的作法中得到启示. 结果: 已知:如图(1),在Rt△ABC中,∠C=90°,BC=AB. 求证:∠BAC=30°. 证明:延长BC到D,使CD=BC,连结AD. ∵∠ACB=90°, ∴∠ACD=90°. 又∵AC=AC, ∴△ACB≌△ACD(SAS). ∴AB=AD. ∵CD=BC, ∴BC=BD. 又∵BC=AB, ∴AB=BD. ∴AB=AD=BD, 即△ABD为等边三角形. ∴∠B=60°. 在Rt△ABC中,∠BAC=30°. 板书设计 §12.3.2 等边三角形(二) 一、定理的探究 定理:在直角三角形中,有一个锐角是30°,那么它所对的直角边等于斜边的一半. 二、范例分析 三、随堂练习 四、课时小结 五、课后作业 备课资料 参考例题 1.已知,如图,点C为线段AB上一点,△ACM、△CBN是等边三角形. 求证:AN=BM. 证明:△ACM与△CBN是等边三角形. ∴∠ACM=∠BCN. ∴∠ACM+∠MCN=∠BCN+∠NCM, 即∠ACN=∠MCB. 在△ACN和△MCB中, ∴△ACN≌△MCB(SAS). ∴AN=BM. 2.一个直角三角形房梁如图所示,其中BC⊥AC,∠BAC=30°,AB=10cm,CB1⊥AB,B1C⊥AC1,垂足分别是B1、C1,那么BC的长是多少? 解:在Rt△ABC中,∠CAB=30°,AB=10cm. ∴BC=AB=5cm. ∵CB1⊥AB, ∴∠B+∠BCB1=90°. 又∵∠A+∠B=90°, ∴∠BCB1=∠A=30°. 在Rt△ACB1中,BB1=BC=2.5cm. ∴AB1=AB-BB1=10-2.5=7.5(cm). ∴在Rt△AB1C1中,∠A=30°. ∴B1C1=AB1=×7.5=3.75(cm).- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等边三角形
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文