《全等三角形》检测题.doc
《《全等三角形》检测题.doc》由会员分享,可在线阅读,更多相关《《全等三角形》检测题.doc(13页珍藏版)》请在咨信网上搜索。
第十二章 全等三角形 检测题 一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A.形状相同的两个三角形全等 B.面积相等的两个三角形全等 C.完全重合的两个三角形全等 D.所有的等边三角形全等 2. 如图所示,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是( ) 第2题图 A B C D 3.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是( ) A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 4. 在△ABC和△中,AB=,∠B=∠,补充条件后仍不一定能保证 △ABC≌△,则补充的这个条件是( ) A.BC= B.∠A=∠ C.AC= D.∠C=∠ 5.如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是( ) A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 第5题图 6. 要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D ,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是( ) A.边角边 B.角边角 C.边边边 D.边边角 7.已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是( ) A.∠A与∠D互为余角 B.∠A=∠2 C.△ABC≌△CED D.∠1=∠2 8. 在△ABC和△FED 中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件( ) A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④ 第10题图 第9题图 10. 如图所示,在△ABC中,AB>AC,DE∥BC,DE=12BC,点F在BC边上,连接DE,DF,EF,则添加下列哪一个条件后,仍无法判定△BFD与△EDF全等( ) A.EF∥AB B.BF=CF C.∠A=∠DFE D.∠B=∠DEF 二、填空题(每小题3分,共24分) 11. 如果△ABC和△DEF这两个三角形全等,点C和点E,点B和点D分别是对应点,则另一组对应点是 ,对应边是 ,对应角是 ,表示这两个三角形全等的式子是 . 12. 如图,在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是 . 13. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= . 第15题图 第14题图 第13题图 14.如图所示,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE是 度. 15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= . 16.如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC=8 cm,BD=5 cm,那么点D到直线AB的距离是 cm. 第17题图 第16题图 17.如图所示,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是 . 18. 如图所示,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15 cm,则△DEB的周长为 cm. 三、解答题(共46分) 19.(6分)如图,已知△EFG ≌△NMH,∠F与∠M是对应角. (1)写出相等的线段与相等的角; (2)若EF=2.1 cm,FH=1.1 cm,HM=3.3 cm,求MN和HG的长度. 第20题图 第19题图 20. (8分)如图所示,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数. 21.(6分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF. 22. (8分) 如图所示,在△ABC中,∠C=90°, AD是 ∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF. 证明:(1)CF=EB.(2)AB=AF+2EB. 第23题图 第22题图 23. (9分)如图所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC. 24. (9分) 已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点. (1)直线BF垂直于直线CE于点F,交CD于点G(如图①),求证:AE=CG; (2)直线AH垂直于直线CE,垂足为点 H,交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明. 第24题图 第十二章 全等三角形检测题参考答案 1. C 解析:能够完全重合的两个三角形全等,全等三角形的大小相等且形状相同,形状相同的两个三角形相似,但不一定全等,故A错;面积相等的两个三角形形状和大小都不一定相同,故B错;所有的等边三角形不全等,故D错. 2. B 解析:A.与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等; B.与三角形ABC有两边及其夹角相等,二者全等; C.与三角形ABC有两边相等,但夹角不相等,二者不全等; D.与三角形ABC有两角相等,但夹边不对应相等,二者不全等. 故选B. 3. D 解析:∵ △ABE≌△ACD,∠1=∠2,∠B=∠C, ∴ AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确; AD的对应边是AE而非DE,所以D错误.故选D. 4. C 解析:选项A满足三角形全等的判定条件中的边角边,选项B满足三角形全等的判定条件中的角边角,选项D满足三角形全等的判定条件中的角角边,只有选项C 不满足三角形全等的条件. 5. D 解析:∵ △ABC和△CDE都是等边三角形, ∴ BC=AC,CE=CD,∠BCA=∠ECD=60°, ∴ ∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE, ∴ 在△BCD和△ACE中,BC=AC,∠BCD=∠ACE,CD=CE, ∴ △BCD≌△ACE(SAS),故A成立. ∵ △BCD≌△ACE,∴ ∠DBC=∠CAE. ∵ ∠BCA=∠ECD=60°,∴ ∠ACD=60°. 在△BGC和△AFC中,∠CAF=∠CBG,AC=BC,∠GCB=∠ACF=60°,∴ △BGC≌△AFC,故B成立. ∵ △BCD≌△ACE,∴ ∠CDB=∠CEA, 在△DCG和△ECF中,∠CDG=∠CEF,CD=CE,∠GCD=∠FCE=60°,∴ △DCG≌△ECF, 故C成立. 6. B 解析:∵ BF⊥AB,DE⊥BD,∴ ∠ABC=∠BDE. 又∵ CD=BC,∠ACB=∠DCE,∴ △EDC≌△ABC(ASA). 故选B. 7. D 解析:∵ AC⊥CD,∴ ∠1+∠2=90°, ∵ ∠B=90°,∴ ∠1+∠A=90°,∴ ∠A=∠2. 在△ABC和△CED中,∠B=∠E=90°,∠A=∠2,AC=CD, ∴ △ABC≌△CED,故B、C选项正确. ∵ ∠2+∠D=90°, ∴ ∠A+∠D=90°,故A选项正确. ∵ AC⊥CD,∴ ∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D. 8. C 解析:因为∠C=∠D,∠B=∠E,所以点C与点D,点B与点E,点A与点F是对应顶点,AB的对应边应是FE,AC的对应边应是FD,根据AAS,当AC=FD时,有△ABC≌△FED. 9. D 解析:∵ AB=AC,∴ ∠ABC=∠ACB. ∵ BD平分∠ABC,CE平分∠ACB, ∴ ∠ABD=∠CBD=∠ACE=∠BCE. ∴ ①△BCD≌△CBE (ASA); 由①可得CE=BD, BE=CD,∴ ③△BDA≌△CEA (SAS); 又∠EOB=∠DOC,所以④△BOE≌△COD (AAS).故选D. 10. C 解析:A.∵ EF∥AB,∴ ∠BDF=∠EFD. ∵ DE∥BC,∴ ∠EDF=∠BFD. ∵ DF=DF,∴ △BFD≌△EDF,故本选项可以证出全等; B.∵ DE=12BC=BF,∠EDF=∠BFD,DF=DF,∴ △BFD≌△EDF,故本选项可以证出全等; C.由∠A=∠DFE证不出△BFD≌△EDF,故本选项不可以证出全等; D.∵ ∠B=∠DEF,∠EDF=∠BFD,DF=DF,∴ △BFD≌△EDF,故本选项可以证出全等.故选C. 11. 点A与点F AB与FD,BC与DE,AC与FE ∠A=∠F,∠C=∠E,∠B=∠D △ABC≌△FDE 解析:利用全等三角形的表示方法并结合对应点写在对应的位置上写出对应边和对应角. 12. 1<AD<7 解析:延长AD到点E,使DE=AD,连接BE.因为BD=CD,∠BDE = 第13题答图 ∠CDA,DE=DA,所以△BDE≌△CDA.在 △ABE中,AB-AC<AE<AB+AC,所以 2<2AD<14,即1<AD<7. 13. 135° 解析:观察图形可知: △ABC≌△BDE, ∴ ∠1=∠DBE. 又∵ ∠DBE+∠3=90°,∴ ∠1+∠3=90°. ∵ ∠2=45°,∴ ∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°. 14. 60 解析:∵ △ABC是等边三角形, ∴ ∠ABD=∠C,AB=BC.∵ BD=CE, ∴ △ABD≌△BCE,∴ ∠BAD=∠CBE. ∵ ∠ABE+∠EBC=60°,∴ ∠ABE+∠BAD=60°, ∴ ∠APE=∠ABE+∠BAD=60°. 15. 55° 解析:在△ABD与△ACE中, ∵ ∠1+∠CAD=∠CAE +∠CAD,∴ ∠1=∠CAE. 又∵ AB=AC,AD=AE, ∴ △ABD ≌△ACE(SAS).∴ ∠2=∠ABD. ∵ ∠3=∠1+∠ABD=∠1+∠2,∠1=25°,∠2=30°, ∴ ∠3=55°. 16. 3 解析:由∠C=90°,AD平分∠CAB,作DE⊥AB于E, 所以D点到直线AB的距离是DE的长. 由角平分线的性质可知DE=DC. 又BC=8 cm,BD=5 cm,所以DE=DC=3 cm. 所以点D到直线AB的距离是3 cm. 第16题答图 第17题答图 17. 31.5 解析:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA, ∵ OB,OC分别平分∠ABC和∠ACB,OD⊥BC, ∴ OD=OE=OF. ∴ S△ABC=S△OBC+S△OAC+S△OAB =12×OD×BC+12×OE×AC+12×OF×AB =12×OD×(BC+AC+AB) =12×3×21=31.5. 18. 15 解析:因为CD平分∠ACB,∠A=90°,DE⊥BC,所以∠ACD=∠ECD,CD=CD,∠DAC=∠DEC,所以△ADC≌△EDC,所以AD=DE, AC=EC,所以△DEB的周长=BD+DE+BE=BD+AD+BE.又因为AB=AC,所以△DEB的周长=AB+BE=AC+BE=EC+BE=BC=15(cm). 19. 分析:(1)根据△EFG ≌△NMH,∠F与∠M是对应角可得到两个三角形中对应相等的三条边和三个角; (2)根据(1)中的相等关系即可得MN和HG的长度. 解:(1)因为△EFG ≌△NMH,∠F与∠M是对应角, 所以EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM. 因为GH是公共边,所以FH=GM. (2)因为EF=NM,EF=2.1 cm, 所以MN=2.1 cm. 因为FG=MH,FH+HG=FG,FH=1.1 cm,HM=3.3 cm, 所以HG=FG-FH=HM-FH=3.3-1.1=2.2(cm). 20. 分析:由△ABC≌△ADE,可得∠DAE=∠BAC=12(∠EAB-∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B.因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形外角性质可得∠DGB=∠DFB -∠D,即可得∠DGB的度数. 解:∵ △ABC≌△ADE, ∴ ∠DAE=∠BAC=12(∠EAB-∠CAD)=12120°-10°=55°. ∴ ∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°, ∠DGB=∠DFB-∠D=90°-25°=65°. 21. 分析:首先根据角间的关系推出∠EAC=∠BAF,再根据边角边定理,证明△EAC≌ △BAF.最后根据全等三角形的性质定理,得知EC=BF.根据角的转换可求出EC⊥BF. 证明:(1)因为 AE⊥AB,AF⊥AC,所以∠EAB=90°=∠FAC, 所以∠EAB+∠BAC=∠FAC+∠BAC. 又因为∠EAC=∠EAB+∠BAC,∠BAF=∠FAC+∠BAC,所以∠EAC=∠BAF. 在△EAC与△BAF中,所以△EAC≌△BAF. 所以EC=BF. (2)因为∠AEB+∠ABE=90°,又由△EAC≌△BAF可知∠AEC=∠ABF, 所以∠CEB+∠ABF+∠EBA=90°,即∠MEB+∠EBM=90°, 即∠EMB=90°,所以EC⊥BF. 22. 分析:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离,即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB. (2)利用角平分线性质证明△ADC≌△ADE,∴ AC=AE,再将线段AB进行转化. 证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC. 又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL), ∴ CF=EB. (2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC, ∴ △ADC≌△ADE,∴ AC=AE, ∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB. 23. 证明:∵ DB⊥AC ,CE⊥AB,∴ ∠AEC=∠ADB=90°. ∴ 在△ACE与△ABD中, ∴ △ACE≌△ABD (AAS), ∴ AD=AE. ∴ 在Rt△AEF与Rt△ADF中, ∴ Rt△AEF≌Rt△ADF(HL), ∴ ∠EAF=∠DAF,∴ AF平分∠BAC. 24. 解:⑴因为直线BF垂直于CE于点F,所以∠CFB=90°, 所以∠ECB+∠CBF=90°. 又因为∠ACE +∠ECB=90°,所以∠ACE =∠CBF . 因为AC=BC, ∠ACB=90°,所以∠A=∠CBA=45°. 又因为点D是AB的中点,所以∠DCB=45°. 因为∠ACE =∠CBF,∠DCB=∠A,AC=BC,所以△CAE≌△BCG,所以AE=CG. (2)BE=CM.证明:∵ ∠ACB=90°,∴ ∠ACH +∠BCF=90°. ∵ CH⊥AM,即∠CHA=90°,∴ ∠ACH +∠CAH=90°,∴ ∠BCF=∠CAH. ∵ CD为等腰直角三角形斜边上的中线,∴ CD=AD.∴ ∠ACD=45°. △CAM与△BCE中,BC=CA ,∠BCF=∠CAH,∠CBE=∠ACM, ∴ △CAM ≌△BCE,∴ BE=CM. 13 / 13- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等三角形 全等 三角形 检测
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文