高中数学必修一函数的性质单调性习题测试.doc
《高中数学必修一函数的性质单调性习题测试.doc》由会员分享,可在线阅读,更多相关《高中数学必修一函数的性质单调性习题测试.doc(2页珍藏版)》请在咨信网上搜索。
单调性 1.在区间(0,+∞)上不是增函数的函数是 ( ) A.y=2x+1 B.y=3x2+1 C.y= D.y=2x2+x+1 2.函数f(x)=4x2-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f(1)等于 ( ) A.-7 B.1 C.17 D.25 3.函数f(x)在区间(-2,3)上是增函数,则y=f(x+5)的递增区间是 ( ) A.(3,8) B.(-7,-2) C.(-2,3) D.(0,5) 4.函数f(x)=在区间(-2,+∞)上单调递增,则实数a的取值范围是 ( ) A.(0,) B.( ,+∞) C.(-2,+∞) D.(-∞,-1)∪(1,+∞) 5.已知函数f(x)在区间[a,b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]内( ) A.至少有一实根 B.至多有一实根 C.没有实根 D.必有唯一的实根 6.已知函数f(x)=8+2x-x2,如果g(x)=f( 2-x2 ),那么函数g(x) ( ) A.在区间(-1,0)上是减函数 B.在区间(0,1)上是减函数 C.在区间(-2,0)上是增函数 D.在区间(0,2)上是增函数 7. 已知函数f(x)是R上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f(x+1)|<1的解集的补集是 A.(-1,2) B.(1,4) C.(-∞,-1)∪[4,+∞) D.(-∞,-1)∪[2,+∞) 8.定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),下列式子一定成立的是 A.f(-1)<f(9)<f(13) B.f(13)<f(9)<f(-1) C.f(9)<f(-1)<f(13) D.f(13)<f(-1)<f(9) 9.函数的递增区间依次是 ( ) A. B. C. D 10.已知函数在区间上是减函数,则实数的取值范围是( ) A.a≤3 B.a≥-3 C.a≤5 D.a≥3 11.已知f(x)在区间(-∞,+∞)上是增函数,a、b∈R且a+b≤0,则下列不等式中正确的是( ) A.f(a)+f(b)≤-f(a)+f(b)] B.f(a)+f(b)≤f(-a)+f(-b) C.f(a)+f(b)≥-f(a)+f(b)] D.f(a)+f(b)≥f(-a)+f(-b) 12.定义在R上的函数y=f(x)在(-∞,2)上是增函数,且y=f(x+2)图象的对称轴是x=0,则 ( ) A.f(-1)<f(3) B.f (0)>f(3) C.f (-1)=f (-3) D.f(2)<f(3) 13.函数y=(x-1)-2的减区间是___ _. 14.函数y=x-2+2的值域为__ ___. 15、设是上的减函数,则的单调递减区间为 . 16、函数f(x) = ax2+4(a+1)x-3在[2,+∞]上递减,则a的取值范围是__ . 17.f(x)是定义在( 0,+∞)上的增函数,且f() = f(x)-f(y) (1)求f(1)的值. (2)若f(6)= 1,解不等式 f( x+3 )-f() <2 . 18. 函数f(x)=-x3+1在R上是否具有单调性?如果具有单调性,它在R上是增函数还是减函数?试证明你的结论. 19.试讨论函数f(x)=在区间[-1,1]上的单调性. 20.设函数f(x)=-ax,(a>0),试确定:当a取什么值时,函数f(x)在0,+∞)上为单调函数. 21.已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,求实数m的取值范围. 22.已知函数f(x)=,x∈[1,+∞] (1)当a=时,求函数f(x)的最小值;(2)若对任意x∈[1,+∞,f(x)>0恒成立,试求实数a的取值范围. 参考答案 一、选择题: CDBBD ADCCA BA 二、填空题:13. (1,+∞), 14. (-∞,3),15., 三、解答题:17.解析:①在等式中,则f(1)=0.②在等式中令x=36,y=6则 故原不等式为:即f[x(x+3)]<f(36),又f(x)在(0,+∞)上为增函数,故不等式等价于: 18.解析: f(x)在R上具有单调性,且是单调减函数,证明如下:设x1、x2∈(-∞,+∞), x1<x2 ,则f(x1)=-x13+1, f(x2)=-x23+1.f(x1)-f(x2)=x23-x13=(x2-x1)(x12+x1x2+x22)=(x2-x1)[(x1+)2+x22].∵x1<x2,∴x2-x1>0而(x1+)2+x22>0,∴f(x1)>f(x2).∴函数f(x)=-x3+1在(-∞,+∞)上是减函数. 19.解析: 设x1、x2∈-1,1]且x1<x2,即-1≤x1<x2≤1.f(x1)-f(x2)=-==,∵x2-x1>0,>0,∴当x1>0,x2>0时,x1+x2>0,那么f(x1)>f(x2).当x1<0,x2<0时,x1+x2<0,那么f(x1)<f(x2). 故f(x)=在区间[-1,0]上是增函数,f(x)=在区间[0,1]上是减函数. 20.解析:任取x1、x2∈0,+且x1<x2,则f(x1)-f(x2)=--a(x1-x2)=-a(x1-x2)=(x1-x2)(-a),(1)当a≥1时,∵<1,又∵x1-x2<0,∴f(x1)-f(x2)>0,即f(x1)>f(x2),∴a≥1时,函数f(x)在区间[0,+∞)上为减函数. (2)当0<a<1时,在区间[0,+∞]上存在x1=0,x2=,满足f(x1)=f(x2)=1,∴0<a<1时,f(x)在[0,+上不是单调函数。注: ①判断单调性常规思路为定义法;②变形过程中<1利用了>|x1|≥x1;>x2;③从a的范围看还须讨论0<a<1时f(x)的单调性,这也是数学严谨性的体现. 21.解析: ∵f(x)在(-2,2)上是减函数,∴由f(m-1)-f(1-2m)>0,得f(m-1)>f(1-2m) ∴ 解得,∴m的取值范围是(-) 22.解析: (1)当a=时,f(x)=x++2,x∈1,+∞),设x2>x1≥1,则f(x2)-f(x1)=x2+=(x2-x1)+=(x2-x1)(1-),∵x2>x1≥1,∴x2-x1>0,1->0,则f(x2)>f(x1),可知f(x)在[1,+∞)上是增函数.∴f(x)在区间[1,+∞上的最小值为f(1)=。(2)在区间[1,+∞上,f(x)=>0恒成立x2+2x+a>0恒成立。设y=x2+2x+a,x∈1,+∞),由y=(x+1)2+a-1可知其在[1,+∞)上是增函数,当x=1时,ymin=3+a,于是当且仅当ymin=3+a>0时函数f(x)>0恒成立.故a>-3.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 函数 性质 调性 习题 测试
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文