![点击分享此内容可以赚币 分享](/master/images/share_but.png)
第六章第六节课时限时检测.doc
《第六章第六节课时限时检测.doc》由会员分享,可在线阅读,更多相关《第六章第六节课时限时检测.doc(4页珍藏版)》请在咨信网上搜索。
(时间60分钟,满分80分) 一、选择题(共6个小题,每小题5分,满分30分) 1.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”过程应用了( ) A.分析法 B.综合法 C.综合法、分析法综合使用 D.间接证明法 解析:因为证明过程是“从左往右”,即由条件⇒结论. 答案:B 2.设a,b∈R,则“a+b=1”是“4ab≤1”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:若“a+b=1”,则4ab=4a(1-a)=-4(a-)2+1≤1;若“4ab≤1”,取a=-4,b=1,a+b=-3,即“a+b=1”不成立;则“a+b=1”是“4ab≤1”的充分不必要条件. 答案:A 3.设a,b,c∈(-∞,0),则a+,b+,c+( ) A.都不大于-2 B.都不小于-2 C.至少有一个不大于-2 D.至少有一个不小于-2 解析:因为a++b++c+≤-6,所以三者不能都大于-2. 答案:C 4.要证:a2+b2-1-a2b2≤0,只要证明( ) A.2ab-1-a2b2≤0 B.a2+b2-1-≤0 C.-1-a2b2≤0 D.(a2-1)(b2-1)≥0 解析:因为a2+b2-1-a2b2≤0⇔(a2-1)(b2-1)≥0. 答案:D 5.若a>b>0,则下列不等式中总成立的是( ) A.a+>b+ B.> C.a+>b+ D.> 解析:∵a>b>0,∴>. 又a>b,∴a+>b+. 答案:A 6.若P=+,Q=+(a≥0),则P、Q的大小关系是( ) A.P>Q B.P=Q C.P<Q D.由a的取值确定 解析:假设P<Q,∵要证P<Q,只要证P2<Q2, 只要证:2a+7+2<2a+7+2, 只要证:a2+7a<a2+7a+12, 只要证:0<12, ∵0<12成立,∴P<Q成立. 答案:C 二、填空题(共3个小题,每小题5分,满分15分) 7.在不等边三角形中,a为最大边,要想得到∠A为钝角的结论,三边a,b,c应满足______________. 解析:由余弦定理cosA=<0, 所以b2+c2-a2<0,即a2>b2+c2. 答案:a2>b2+c2 8.如果a+b>a+b,则a、b应满足的条件是________. 解析:∵a+b>a+b⇔(-)2(+)>0⇔a≥0,b≥0且a≠b. 答案:a≥0,b≥0且a≠b 9.设x,y,z是空间的不同直线或不同平面,且直线不在平面内,下列条件中能保证“若x⊥z,且y⊥z,则x∥y”为真命题的是________(填所有正确条件的代号). ①x为直线,y,z为平面; ②x,y,z为平面; ③x,y为直线,z为平面; ④x,y为平面,z为直线; ⑤x,y,z为直线. 解析:①中x⊥平面z,平面y⊥平面z, ∴x∥平面y或x⊂平面y. 又∵x⊄平面y,故x∥y成立. ②中若x,y,z均为平面,则x可与y相交,故②不成立. ③x⊥z,y⊥z,x,y为不同直线,故x∥y成立. ④z⊥x,z⊥y,z为直线,x,y为平面可得x∥y,④成立. ⑤x,y,z均为直线可异面垂直,故⑤不成立. 答案:①③④ 三、解答题(共3个小题,满分35分) 10.已知a>b>c,且a+b+c=0,求证:<a. 证明:要证<a,只需证b2-ac<3a2, ∵a+b+c=0, 只需证b2+a(a+b)<3a2, 只需证2a2-ab-b2>0, 只需证(a-b)(2a+b)>0, 只需证(a-b)(a-c)>0. 因为a>b>c,所以a-b>0,a-c>0, 所以(a-b)(a-c)>0,显然成立. 故原不等式成立. 11.设数列{an}是公比为q的等比数列,Sn是它的前n项和. (1) 求证:数列{Sn}不是等比数列; (2)数列{Sn}是等差数列吗?为什么? 解:(1)证明:假设数列{Sn}是等比数列,则S=S1S3, 即a(1+q)2=a1·a1(1+q+q2), 因为a1≠0,所以(1+q)2=1+q+q2, 即q=0,这与公比q≠0矛盾, 所以数列{Sn}不是等比数列. (2)当q=1时,{Sn}是等差数列; 当q≠1时,{Sn}不是等差数列; 假设当q≠1时数列{Sn}是等差数列,则2S2=S1+S3, 即2a1(1+q)=a1+a1(1+q+q2),得q=0,这与公比q≠0矛盾,所以当q≠1时数列{Sn}不是等差数列. 12.设f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0, f(1)>0,求证:a>0且-2<<-1. 证明:f(0)>0,∴c>0, 又∵f(1)>0,即3a+2b+c>0.① 而a+b+c=0即b=-a-c代入①式, ∴3a-2a-2c+c>0,即a-c>0,∴a>c. ∴a>c>0.又∵a+b=-c<0,∴a+b<0. ∴1+<0,∴<-1. 又c=-a-b,代入①式得, 3a+2b-a-b>0,∴2a+b>0, ∴2+>0,∴>-2. 故-2<<-1.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第六 课时 限时 检测
![提示](https://www.zixin.com.cn/images/bang_tan.gif)
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文