经典初中数学题.doc
《经典初中数学题.doc》由会员分享,可在线阅读,更多相关《经典初中数学题.doc(13页珍藏版)》请在咨信网上搜索。
专题4 几何证明 【知识要点】 1.进一步掌握直角三角形的性质,并能够熟练应用; 2.通过本节课的学习能够熟练地写出较难证明的求证; 3.证明要合乎逻辑,能够应用综合法熟练地证明几何命题。 【概念回顾】 1.全等三角形的性质:对应边( ),对应角( )对应高线( ),对应中线( ),对应角的角平分线( )。 2.在Rt△ABC中,∠C=90°,∠A=30°,则BC:AC:AB=( )。 【例题解析】 【题1】已知在ΔABC中,,AB=AC,BD平分.求证:BC=AB+CD. 【题2】如图,点E为正方形ABCD的边CD上一点,点F为CB的延长线上的一点,且EA⊥AF.求证:DE=BF. 【题3】如图,AD为ΔABC的角平分线且BD=CD.求证:AB=AC. 【题4】已知:如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD,证明AB=DE,AC=DF. 【题5】已知:如图,△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5. A P C B 求:∠APB的度数. 【题6】如图:△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足是F,过B作BD⊥BC交CF的延长线于D。 (1) 求证:AE=CD; (2) 若AC=12㎝,求BD的长. 【题7】等边三角形CEF于菱形ABCD边长相等. 求证:(1)∠AEF=∠AFE (2)角B的度数 【题8】如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,求证:AB=AC+CD. 【题9】如图,在三角形ABC中,AD是BC边上的中线,E是AD的中点,BE的延长线交AC于点F. 求证:AF=FC 【题10】如图,将边长为1的正方形ABCD绕点C旋转到A'B'CD'的位置,若∠B'CB=30度,求AE的长. 【题11】AD,BE分别是等边△ABC中BC,AC上的高。M,N分别在AD,BE的延长线上,∠CBM=∠ACN.求证AM=BN. 【题12】已知:如图,AD、BC相交于点O,OA=OD,OB=OC,点E、F在AD上,且AE=DF,∠ABE=∠DCF. 求证:BE‖CF. 【巩固练习】 【练1】 如图,已知BE垂直于AD,CF垂直于AD,且BE=CF. (1) 请你判断AD是三角形ABC的中线还是角平分线?请证明你的结论。 (2) 链接BF,CE,若四边形BFCE是菱形,则三角形ABC中应添加一个什么条件? 【练2】在等腰直角三角形ABC中,O是斜边AC的中点,P是斜边上的一个动点,且PB=PD,DE垂直AC,垂足为E。 (1) 求证:PE=BO (2) 设AC=3a,AP=x,四边形PBDE的面积为y,求y与x之间的函数关系式。 【练3】已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD,BC的延长线叫MN与E、F 求证∠DEN=∠F. 【练4】如图,若C在直线OB上,试判断△CDM形状。 【练5】已知△ABC,AD是BC边上的中线,分别以AB边、AC边为直角边向形外作等腰直角三角形。求证:EF=2AD 1、 【练6】如图,等边三角形ABC的边长为2,点P和点Q分别是从A和C两点同时出发,做匀速运动,且他们的速度相同,点P沿射线AB运动,Q点沿点C在BC延长线上运动。设PQ与直线AC相交于点D,作PE⊥AC于点E,当P和Q运动时,线段DE的长度是否改变?证明你的结论。 【提示】 【题1】分析:在BC上截取BE=BA,连接DE.可得ΔBAD≌ΔBED.由已知可得:,,.∴,∴CD=CE,∴BC=AB+CD. 【题2】分析:将ΔABF视为ΔADE绕A顺时针旋转即可. ∵.∴. 又∵,AB=AD.∴ΔABF≌ΔADE.(ASA)∴DE=DF. 【题3】分析:延长AD到E使得AD=ED.易证ΔABD≌ΔECD.∴EC=AB. ∵.∴.∴AC=EC=AB. 【题4】本题比较简单,难点在BF+CF=CE+CF这,一般刚接触三角形证明的人会在这失手。 证明:∵BF=CE 又∵BF+CF=BC CE+CF=EF ∴BC=EF ∵AB∥DE,AC∥FD ∴∠B=∠E,∠DFE=∠BCA 又∵BF=CE ∴△DEF≌△ABC(ASA) ∴AB=DE,AC=DF 【题5】顺时针旋转△ABP 600 ,连接PQ ,则△PBQ是正三角形。 可得△PQC是直角三角形。 所以∠APB=1500 。 【题6】解析:如果遇到这类题,有时在图形中隐藏着一些不明显的条件,你就先试试一个角加公共角等于90°,再试其它角加这个公共角是否能等于90°,能说明它俩相等。 证明:(1)∵BD⊥BC,CF⊥AE ∴∠DBC=∠ACB=∠EFC=90° ∵∠D+∠BCD=90° ∠FEC+∠BCD=90° ∴∠D=∠FEC 又∵∠DBC=∠ACE=90°,AC=BC ∴△DBC≌△ACE(HL) ∴AE=CD (2)由(1)可知 △BDC≌△ACE ∴BC=AC=12㎝,BD=CE ∵AE是BC边上的中线 ∴BE=EC=BC=6㎝ ∵BD=CE ∴BD=6㎝ 【题7】解: ∵CB=CE,CD=CF ∴∠B=∠CEB,∠D=∠CFD ∵∠B=∠D(菱形的对角相等) ∴∠CEB=∠CFD ∵∠CEF=∠CFE=60° ∠CEB+∠CEF+∠AEF=180° ∠CED+∠CFE+∠AFE=180° ∴∠AEF=∠AFE (2)设∠B=X,则∠A=180°—X,∠CEB=X ∵∠AEF=∠AFE,∠A=∠AEF+∠AFE=180° ∴ (180°-X ) +2∠AEF=180° ∴∠AEF=X/2 ∵∠CEB+∠CEF+∠AEF=180° ∴X+60°+X/2=180° ∴X=80° ∴∠B=80° 【题8】解析:这种类型的题,一般是一条长的线段被分为两段,只能证AC、CD这两条线段与AB这条线段平分的两条线段AE、BE相等,从而证明出来。 证明:∵∠AED是△EDB的一个外角 又∵∠1=∠B ∴∠AED=2∠B ∴∠AED=∠C=2∠B ∵AD是△ABC的角平分线 ∴∠CAD=∠DAE 又∵∠AED=∠C,AD=DA ∴△ACD≌△AED(AAS) ∴AC=AE,CD=DE ∵∠1=∠B ∴DE=BE ∴CD=BE ∵AB=AE+BE 又∵AC=AE,CD=BE ∴AB=AC+CD 【题9】解析:作CF的中点G,连接DG,则FG=GC 又∵BD=DC ∴DG∥BF ∴AE∶ED=AF∶FG ∵AE=ED ∴AF=FG ∴= ∴即AF=FC 【题10】提示:证明三角形ABD和三角形CAF全等。AEBD四点共圆。四边形EDCF是平行四边形。(一组对边平行且相等的四边形是平行四边形) 【题11】 证明:因为△ABC为等边三角形,AD垂直于BC、BE垂直于AC, 所以 ∠BAM=∠CBN , 又因为∠CBM=∠ACN 所以∠ABM=∠BCN 在△ABM和△BCN中,有AB=BC ∠BAM=∠CBN ∠ABM=∠BCN 由三角形全等的判定ASA得 △ABM和△BCN全等 所以 AM=BN 【题12】分析: 要证明BE‖CF,只要证明∠E=∠F;已知∠ABE=∠DCF,又由三角形的外角性质可知∠E=∠BAO﹣∠ABE,∠F=∠CDO﹣∠DCF,因此只要证明∠BAO=∠CDO.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 经典 初中 数学题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文