全国通用版高中数学第三章函数的概念与性质专项训练.pdf
《全国通用版高中数学第三章函数的概念与性质专项训练.pdf》由会员分享,可在线阅读,更多相关《全国通用版高中数学第三章函数的概念与性质专项训练.pdf(12页珍藏版)》请在咨信网上搜索。
(名师选题名师选题)全国通用版高中数学第三章函数的概念与性质专项训练全国通用版高中数学第三章函数的概念与性质专项训练 单选题 1、已知函数()的定义域为(3,5),则函数(2+1)的定义域为()A(1,2)B(7,11)C(4,16)D(3,5)答案:A 分析:根据3 2+1 5求解即可 ()的定义域为(3,5),3 5,由3 2+1 5,得1 2,则函数(2+1)的定义域为(1,2)故选:A.2、下列各组函数表示同一函数的是()A()=,()=33B()=1,()=0 C()=+1,()=211D()=2,()=()2 答案:A 分析:根据相同函数的定义,分别判断各个选项函数的定义域和对应关系是否都相同,即可得出答案.解:对于 A,两个函数的定义域都是R,()=33=,对应关系完全一致,所以两函数是相同函数,故 A 符合题意;对于 B,函数()=1的定义域为R,函数()=0的定义域为|0,故两函数不是相同函数,故 B 不符题意;对于 C,函数()=+1的定义域为R,函数()=211的定义域为|1,故两函数不是相同函数,故 C 不符题意;对于 D,函数()=2的定义域为R,函数()=()2的定义域为0,+),故两函数不是相同函数,故 D 不符题意.故选:A.3、若函数(2+1)=2 2,则(3)等于()A1B0C1D3 答案:A 分析:换元法求出函数的解析式,代入计算即可求出结果.令2+1=,得=12,所以()=(12)2 2 12=14232+54,从而(3)=14 3232 3+54=1.故选:A.4、函数()=2+5+6+1的定义域()A(,1 6,+)B(,1)6,+)C(1,6D2,3 答案:C 分析:解不等式组2+5+6 0+1 0得出定义域.2+5+6 0+1 0,解得1 0排除选项 D,利用=2时 0排除选项 C,利用=12时 0,可知选项 D 错误;当=2时,=(2)3(2)413=8153 0,可知选项 C 错误;当=12时,=(12)3(12)413=12603 0,若,+0 所以函数()为(0,+)的增函数,故=2 所以()=7,又()=(),所以()为单调递增的奇函数 由+0,则 ,所以()()=()则()+()0,(1)(2)(1 2)0,属中档题.7、已知函数f(x)=22 6+3,1,2,则函数的值域是()A32,11)B32,11)C 1,11D32,11 答案:D 分析:根据二次函数的对称轴和端点处的值即可求解值域.()=22 6+3=2(32)2-32,对称轴=32,当 1,2,()min=(32)=32,又因为(1)=11,(2)=1,()max=(1)=11,所以函数的值域为32,11.故选:D 8、已知函数()对于任意、,总有()+()=(+)+2,且当 0时,()2,若已知(2)=3,则不等式()+(2 2)6的解集为()A(2,+)B(1,+)C(3,+)D(4,+)答案:A 分析:设()=()2,分析出函数()为上的增函数,将所求不等式变形为(3 2)(4),可得出3 2 4,即可求得原不等式的解集.令()=()2,则()=()+2,对任意的、,总有()+()=(+)+2,则()+()=(+),令=0,可得()+(0)=(),可得(0)=0,令=时,则由()+()=(0)=0,即()=(),当 0时,()2,即()0,任取1、2 且1 2,则(1)+(2)=(1 2)0,即(1)(2)0,即(1)(2),所以,函数()在上为增函数,且有(2)=(2)2=1,由()+(2 2)6,可得()+(2 2)+4 6,即()+(2 2)2(2),所以,(3 2)2(2)=(4),所以,3 2 4,解得 2.因此,不等式()+(2 2)6的解集为(2,+).故选:A.9、下列函数既是偶函数又在(0,+)上单调递减的是()A=+1B=3C=2|D=12 答案:C 分析:逐项判断函数奇偶性和单调性,得出答案.解析:A 项=+1,B 项=3均为定义域上的奇函数,排除;D 项=12为定义域上的偶函数,在(0,+)单调递增,排除;C 项=2|为定义域上的偶函数,且在(0,+)上单调递减.故选:C.10、已知(2 1)=42+3,则()=()A2 2+4B2+2C2 2 1D2+2+4 答案:D 分析:利用换元法求解函数解析式.令=2 1,则=+12,()=4(+12)2+3=2+2+4;所以()=2+2+4.故选:D.11、函数=42+1的图象大致为()AB CD 答案:A 分析:由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.由函数的解析式可得:()=42+1=(),则函数()为奇函数,其图象关于坐标原点对称,选项 CD 错误;当=1时,=41+1=2 0,选项 B 错误.故选:A.小提示:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势(3)从函数的奇偶性,判断图象的对称性(4)从函数的特征点,排除不合要求的图象利用上述方法排除、筛选选项 12、现有下列函数:=3;=(12);=42;=5+1;=(1)2;=;=(1),其中幂函数的个数为()A1B2C3D4 答案:B 分析:根据幂函数的定义逐个辨析即可 幂函数满足=形式,故=3,=满足条件,共 2 个 故选:B 填空题 13、设函数()=12 1(0)1(0),若()=,则实数的值为_ 答案:1 分析:根据已知条件及分段函数分段处理的原则即可求解.由题意知,()=;当 0时,有12 1=,解得=2(舍去);当 0,解得:1 4,所以函数的定义域为(1,4),设()=2+3+4=(32)2+254,(1,4),则 (1,32)时,()为增函数,(32,4)时,()为减函数,可知当=32时,()有最大值为254,而(1)=(4)=0,所以0 ()254,而对数函数=log0.4在定义域内为减函数,由复合函数的单调性可知,函数=log0.4(2+3+4)在区间(1,32)上为减函数,在(32,4)上为增函数,log0.4254=2,函数=log0.4(2+3+4)的值域为2,+).所以答案是:2,+).小提示:关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.15、已知具有性质:(1)=()的函数,我们称为满足“倒负”变换的函数,下列函数:()=1;()=+1;()=,0 1,其中满足“倒负”变换的函数是_.答案:分析:验证中的函数是否满足(1)=(),由此可得出结论.对于,()=1,该函数的定义域为|0,对任意的|0,(1)=1 =(),满足条件;对于,()=+1,该函数的定义域为|0,对任意的|0,(1)=1+=(),不满足条件;对于,因为()=,0 1,当0 1,则(1)=(),当 1时,0 1 0,(1)=().综上可知,满足“倒负”变换的函数是.所以答案是:.16、已知一次函数=()满足3(1+)2(1 )=4+3,则()_.答案:45+115 分析:设()=+(0),代入利用恒等式思想建立方程组,解之可得答案.设()=+(0),则由3(1+)2(1 )=4+3,得3(+1)+2(1 )+=4+3,即(5 4)+3=0,故5=4,+=3,解得=45,=115,所以()=45+115.所以答案是:45+115.17、已知函数=(2+1)的定义域为1,2,则函数=(1)的定义域为_.答案:0,6 分析:根据抽象函数的定义域求解规则求解即可.函数=(2+1)的定义域为1,2,即1 2,所以1 2+1 5,所以1 1 5,即0 6,所以函数的定义域为0,6.所以答案是:0,6.解答题 18、已知幂函数()=22()是偶函数,且在(0,+)上是减函数,求函数()的解析式 答案:()=2 分析:根据幂函数的单调性,可知2 2 0,又 ,则=0,1,再根据函数()是偶函数,将=0,1分别代入验证可得答案.因为幂函数()在区间(0,+)上单调递减,则2 2 0,得 (1,2),又 ,=0或 1 因为函数()是偶函数,将=0,1分别代入,当=0时,2 2=2,函数为()=2是偶函数,满足条件.当=1时,2 2=2,函数为()=2是偶函数,满足条件.()的解析式为()=2 19、若函数()为偶函数,当 0时,()=22 4(1)求函数()的表达式,画出函数()的图象;(2)若函数()在区间 3,1上单调递减,求实数的取值范围 答案:(1)()=22 4,022+4,0;作图见解析;(2)3,4)分析:(1)根据题意,利用函数的奇偶性求出函数的解析式,作出函数的图象即可,(2)结合函数的图象可得关于的不等式,解可得的取值范围,即可得答案 解:(1)当 0,()=22+4 由()是偶函数,得()=()=22+4 所以()=22 4,022+4,0 函数()的图象,如图 (2)由图象可知,函数()的单调递减区间是(,1和0,1 要使()在 3,1上单调递减,则0 3 1,解得3 4,所以实数a的取值范围是3,4)20、已知函数()=+1.(1)请判断函数()在(0,1)和(1,+)内的单调性,并证明在(1,+)的单调性;(2)若存在 14,12,使得2 +1 0成立,求实数的取值范围.答案:(1)()在(0,1)上递减,在(1,+)递增,证明见解析(2)(,174 分析:(1)利用单调性的定义判断证明即可;(2)问题转化为存在 14,12,+1,所以只要求出()=+1的最大值即可求解.(1)()在(0,1)上递减,在(1,+)递增,证明:任取1,2(1,+),且1 2,则(2)(1)=2+12 111=(2 1)+1 212=(2 1)(1 112)=(2 1)12 112 因为1 1 0,21 1 0,所以(2)(1)0,即(2)(1),所以()在(1,+)上单调递增,(2)由存在 14,12,使得2 +1 0成立,得存在 14,12,使得 +1成立,由(1)可知()=+1在 14,12上递减,所以当=14时,()取得最大值,即()max=14+114=174,所以 174,即实数的取值范围为(,174- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 通用版 高中数学 第三 函数 概念 性质 专项 训练
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文