第3章习题课对数函数.doc
《第3章习题课对数函数.doc》由会员分享,可在线阅读,更多相关《第3章习题课对数函数.doc(8页珍藏版)》请在咨信网上搜索。
习题课 对数函数 明目标、知重点 1.巩固和深化对有关对数基础知识的理解与掌握.2.重点掌握好对数函数的图象及性质的应用及对数函数与其它有关知识的综合应用. 1.若logx=z,则下列各式成立的是________. ①y7=xz;②y=x7z;③y=7xz;④y=z7x. 2.已知函数f(x)=lg,若f(a)=b,则f(-a)=______. 3.已知函数y=f(2x)的定义域为[-1,1],则函数y=f(log2x)的定义域为________. 4.函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为________. 5.已知 (a>0),则=________. 6.已知0<a<b<1<c,m=logac,n=logbc,则m与n的大小关系是________. 题型一 对数式的化简与求值 例1 计算:(1)log(2+)(2-); (2)已知2lg=lg x+lg y,求log(3-2). 反思与感悟 在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底,指数与对数互化. 跟踪训练1 计算: (1)log2+log212-log242-1; (2)(lg 2)2+lg 2·lg 50+lg 25. 题型二 对数函数的图象与性质 例2 已知f(x)=logax(a>0且a≠1),如果对于任意的x∈[,2]都有|f(x)|≤1成立,试求a的取值范围. 反思与感悟 本题属于函数恒成立问题,即对于x∈[,2]时,|f(x)|恒小于等于1,恒成立问题一般有两种思路:一是利用图象转化为最值问题;二是利用单调性转化为最值问题.由于本题底数a为参数,需对a进行分类讨论. 跟踪训练2 已知函数f(x)=|lg x|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是________. 题型三 对数函数的综合应用 例3 已知函数f(x)=log2x,x∈[2,8],函数g(x)=f2(x)-2af(x)+3的最小值为h(a). (1)求h(a); (2)是否存在实数m,n,同时满足以下条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n2,m2],若存在,求出m,n的值;若不存在,说明理由. 反思与感悟 本题利用了换元法,把log2x看作一个整体用t来表示,从而得到一个新函数,因此需要求出函数的定义域.所示函数的最值本身也是关于a的分段函数,所以函数思想是中学阶段常用的重要思想. 跟踪训练3 已知函数f(x)=loga(x+1)(a>1),若函数y=g(x)图象上任意一点P关于原点对称的点Q在函数f(x)的图象上. (1)写出函数g(x)的解析式; (2)当x∈[0,1)时总有f(x)+g(x) m成立,求m的取值范围. [呈重点、现规律] 1.指数式ab=N与对数式logaN=b的关系以及这两种形式的互化是对数运算法则的关键. 2.指数运算的实质是指数式的积、商、幂的运算,对于指数式的和、差应充分运用恒等变形和乘法公式;对数运算的实质是把积、商、幂的对数转化为对数的和、差、积. 3.注意对数恒等式、对数换底公式及等式logambn=·logab,logab=在解题中的灵活应用. 4.在运用性质logaMn=nlogaM时,要特别注意条件,在无M>0的条件下应为logaMn=nloga|M|(n∈N*,且n为偶数). 5.指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别. 6.明确函数图象的位置和形状要通过研究函数的性质,要记忆函数的性质可借助于函数的图象.因此要掌握指数函数和对数函数的性质首先要熟记指数函数和对数函数的图象. 一、基础过关 1.函数f(x)=+lg(2x-1)的定义域为________. 2.设2a=5b=m,且+=2,则m的值为________. 3.若函数f(x)=loga(x+b)的图象如图,其中a,b为常数,则函数g(x)=ax+b的图象大致是________. 4.下列函数中既不是奇函数也不是偶函数的是________.(填序号) ①y=2|x|;②y=lg(x+); ③y=2x+2-x;④y=lg. 5.已知函数f(x)=logax(a>0且a≠1)满足f(9)=2,则a=________. 6.已知函数f(x)=若f(a)=,则a=______. 7.已知函数f(x)=loga(x+1)-loga(1-x),a>0且a≠1. (1)求f(x)的定义域; (2)判断f(x)的奇偶性并予以证明; (3)当a>1时,求使f(x)>0的x的解集. 二、能力提升 8.已知函数f(x)=alog2x-blog3x+3,若f()=5,则f(2 013)=________. 9.已知定义在R上的偶函数f(x)在区间[0,+∞)上是单调减函数,若f(1)>f(lg ),则x的取值范围为____________________. 10.设函数f(x)=logax (a>0,且a≠1),若f(x1x2…x2 015)=8,则f(x)+f(x)+…+f(x)=________. 11.设x∈[2,8]时,函数f(x)=loga(ax)·loga(a2x)(a>0,且a≠1)的最大值是1,最小值是-,求a的值. 12.已知f(x)=log2(x+1),当点(x,y)在函数y=f(x)的图象上时,点(,)在函数y=g(x)的图象上. (1)写出y=g(x)的解析式; (2)求方程f(x)-g(x)=0的根. 三、探究与拓展 13.已知函数f(x)=lg(ax-bx)(a>1>b>0). (1)求y=f(x)的定义域; (2)在函数y=f(x)的图象上是否存在不同的两点,使得过这两点的直线平行于x轴; (3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 习题 对数 函数
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文