七年级数学上册第三章一元一次方程整章教案和习题.doc
《七年级数学上册第三章一元一次方程整章教案和习题.doc》由会员分享,可在线阅读,更多相关《七年级数学上册第三章一元一次方程整章教案和习题.doc(41页珍藏版)》请在咨信网上搜索。
第三章 一元一次方程 教学内容 本章主要内容包括:一元一次方程及其相关概念,一元一次方程的解法,利用一元一次方程分析和解决实际问题。分析实际问题中的数量关系并用一元一次方程表示是始终贯穿这些内容的主线,而且始终渗透着“数学建模”和“化归”的思想方法。 通过丰富实例,从算式到方程建立一元一次方程,展开方程是刻划现实生活的有效数学模型;通过观察、归纳引出不等式的两条性质,为进一步讨论较复杂的一元一次方程的解法准备理论依据;从实际问题出发,运用等式的性质解方程,归纳“移项”、“合并”、“去括号”等法则,逐步展现求解方程的一般步骤;运用方程解决实际问题,通过探究活动,加强数学建模思想,提高学生分析问题和解决问题的能力。 本教案对列方程解决实际问题的内容作了较集中的归类讨论。 教学目标 〔知识与技能〕 1、理解一元一次方程及有关概念和等式的基本性质; 2、熟练掌握一元一次方程的解法(数字系数)并学会运用一元一次方程解决简单的实际问题。 〔过程与方法〕 经历解一元一次方程和列一元一次方程解决实际问题的过程,明确解一元一次方程和列一元一次方程的基本步骤,初步树立数学建模思想和体会化归思想的运用。 〔情感、态度与价值观〕 在解决实际问题中,体会数学的应用价值,激发学习数学的欲望,提高分析问题和解决问题的能力。 重点难点 一元一次方程的解法和运用是重点,列一元一次方程解决实际问题是难点。 课时分配 3.1 从算式到方程………………………………………… 2课时 3.2 解一元一次方程的讨论(一) ………………………… 3课时 3.3 解一元一次方程的讨论(一) ………………………… 4课时 3.4 实际问题与一元一次方程 ………………………… 3课时 本章小结 ………………………………………… 2课时 3.1.1一元一次方程 [教学目标]理解一元一次方程的概念,会识别一元一次方程;了解方程的解,会验证方程的解;知道怎样列方程解决实际问题,感受方程作为刻画现实世界有效模型的意义。 [重点难点]一元一次方程和方程的解的概念是重点;怎样列方程解决实际问题是难点。 〔教学方法〕指导探究,合作交流 〔教学资源〕小黑板 [教学过程] 一、问题导入 含有未知数的等式叫做方程。方程把问题中的未知数与已知数的联系用等式的形式表示出来。研究问题时,要分析数量关系,用字母表示未知数,列出方程,然后求出未知数。 怎样根据问题中的数量关系列出方程?怎样解方程? 二、怎样列方程 问题 汽车匀速行驶途径王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。王家庄到翠湖的路程有多远? 地 名 时 间 王家庄 10:00 青 山 13:00 秀 水 15:00 50千米 70千米 王家庄 青山 翠湖 秀水 x千米 1、汽车从王家庄行驶到青山用了多少时间?从青山到秀水用了多少时间? 2、请你用算术方法解决这个问题。 3、如果设王家庄到翠湖的路程为x千米,那么王家庄距青山多少千米?王家庄距秀水多少千米? 4、由于汽车是匀速行驶,可知各段路程的车速相等。你能据此列出方程吗? 列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含未知数的等式——方程。 列方程的过程可以表示如下: 实际问题 一元一次方程 设未知数,列方程 分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。 三、一元一次方程的概念 例1 根据下列问题,设未知数并列出方程: (1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少? (2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时? (3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生? 解:(1)设正方形的边长为x厘米,可列方程4x=24 ① (2)设x月后这台计算机的使用时间达到规定的检修时间。1700+150 x=2450 ② (3)设这个学校的学生人数为x人,那么女生人数是多少?男生人数是多少? 女生人数为0.52 x人,男生人数为(1-0.52)x人。0.52 x -(1-0.52)x=80 ③ 观察方程①②③,它们有什么共同的特点? 只含有一个未知数;未知数的次数是1。 只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。 思考:下列式子中,哪些是一元一次方程? ①2x+3;②2×6=12;③1/2x-3=2;④1/x+3x=5;⑤y=0. 四、方程的解 列方程是解决实际问题的一种方法,利用方程可以解出未知数。 想一想:(1)x等于多少时,方程①的左右两边相等? (2)x=5能使②的左右两边相等吗? 能使方程左右两边相等的未知数的值,叫做方程的解。 思考:x=2是方程3x-1=2x+1的解吗?为什么? 五、课堂练习 课本82面1、2、3题。 六、课堂小结 1、怎样列方程?怎样解决实际问题? 解决实际问题就是把实际问题抽象成数学问题,通过解决数学问题来解决实际问题. 2、什么叫一元一次方程? 3、什么是方程的解?你怎样知道某个未知数的值是方程的解? 作业: 课本84面1、2;85面5、6、10(2)题。 七、板书设计: 一元一次方程 一、提出问题 二、一元一次方程的概念 三、方程的解 四、例题 八、课后反思: 3.1.2等式的性质 〔教学目标〕1、了解等式的概念;2、利用天平的经验分析得出等式的性质;3、会利用等式的性质解方程。 〔重点难点〕等式的性质和运用是重点;利用天平经验抽象出等式的性质是难点。 〔教学方法〕指导探究,合作交流 〔教学资源〕多媒体设备 〔教学过程〕 一、问题导入 我们知道未知数的某个值是方程的解,但怎样才能知道方程的解是什么呢?方程是含有未知数的等式,我们先来看看等式有什么性质。 二、等式及其性质 1、等式 用等号表示相等关系的式子叫等式。如:m+n=n+m,x+2x=3,3×3+1=5×2,3x+1=5y,等等。 注意:等式中一定含有等号。 我们可以用a=b来表示一般的等式。 2、等式的性质 观察天平的变化,你能发现了什么? + —— 在平衡天平的两边都加上(或减去)同样的量,天平还保持平衡。 如果把天平看成等式,球和正方体看成数或式,那么你能得到什么结论? 等式性质1 等式两边加上(或减去)同一个数(或式子),结果仍相等。 用字母表示为:如果a=b,那么a±c=b±c ×3 ÷3 观察天平的变化,你能发现了什么? 把平衡天平的两边都扩大(或缩小)相同的倍数,天平仍保持平衡。 同样地,如果把天平看成等式,球和正方体看成数,那么你能得到什么结论? 等式性质2 等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。 用字母表示为:如果a=b,那么ac=bc;如果a=b,那么a/c=b/c(c≠0)。 注意:①等式两边除以一个数时,这个数必须不为0;②对等式变形必须同时进行,且是同一个数或式。 思考:回答下列问题: (1)从a+b=b+c,能否能到a=c,为什么? (2)从a-b=b-c,能否能到a=c,为什么? (1)从ab=bc,能否能到a=c,为什么? (1)从a/b=c/b,能否能到a=c,为什么? (1)从xy=1,能否能到x=1/y,为什么? 三、例题 例1 利用等式的性质解下列方程: (1)x+7=26; (2)-5x=20; (3)-1/3x-5=4. 分析:解方程的结果就是将方程转化为x=a的形式,为此,解方程就要将未知项移到一边,常数项移到另一边。 解:(1)将常数项移到右边,得:x=26-7 化为x=a的形式,得 x=19。 (2)化为x=a的形式,得:x=20/-5 于是x=-4。 (3)将常数项移到右边,得:-1/3x=4+5即-1/3x=9 化为x=a的形式,得:x=9×(-3)于是x=-27。 四、课堂练习:课本84面练习(1)~(4)。 五、课堂小结 1、等式和等式的性质。 2、运用等式的性质解方程。 作业:课本85面3、4、7、8。 六、板书设计: 等式的性质 一、等式及其性质 二、例题 三、练习 七、课后反思: 3.2.1解一元一次方程——合并同类项 [教学目标]1、会利用合并同类项解一元一次方程; 2、通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。 [重点难点] 利用合并同类项解一元一次方程是重点;列一元一次方程解决实际问题是难点。 〔教学方法〕指导探究,合作交流 〔教学资源〕小黑板 [教学过程] 一、问题导入 约公元825年,中亚细亚数学家阿尔一花拉子米写了一本代数书,重点论述怎样解方程。这本书的拉丁文译本取名为《对消与还原》。“对消”与“还原”是什么意思?我们先讨论下面的问题,然后再回答这个问题。 二、探索合并同类项解一元一次方程 问题 某校三年共购买计算机140台,去年购买数量是前年的两倍,今年购买数量又是去年的2倍。前年这个学校购买了多少台计算机? 设前年购买计算机x台。那么去年购买计算机多少台?今年购买计算机多少台? 去年购买计算机2x台,今年购买计算机4x台。 问题中的相等关系是什么? 前年购买量+去年购买量+今年购买量=140台 依题意,可得方程:x+2x+4x=140 这个方程怎么解呢?我们知道,解方程的最终结果是要化为x=a的形式,为此可以作怎样的变形? 把左边合并同类项。可得:7x=140 系数化为1,得 x=20 所以前年这个学校购买了20台计算机。 注意:本题蕴含着一个基本的等量关系,即总量=各部分量的和。 思考:上面解方程中“合并同类项”起了什么作用? 它把含未知数的项合并为一项,从而向x=a的形式迈进了一步,起到了化简的作用。 三、例题 例1 解方程7x-2.5x+3x-1.5x=-15×4-6×3 解:合并同类项,得:6x=-78 系数化1,得: x=-13 注意:如果方程中有同类项,一定要合并同类项。 四、课堂练习 课本89面(1)~(4); 补充题: 足球表面是由若干黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少? 五、课堂小结 1、合并同类项解一元一次方程。 通过合并同类项把方程化为ax=b(a≠0,a、b是常数)的形式。从而简化方程。 2、列一元一次方程解实际问题。 (1)找等量关系是关键,也是难点; (2)注意抓住基本等量关系:总量=各部分量的和。 作业: 93面1;3(1)、(2);4;5。 六、板书设计: 3.2.1解一元一次方程——合并同类项 一、问题导入 二、探索合并同类项解一元一次方程 三、例题 四、练习 七、课后反思: 3.2.2解一元一次方程——移项(2) [教学目标]1、理解移项的概念;2、会用移项法解一元一次方程;3、经历用方程解决实际问题的过程。 [重点难点]用移项法解方程是重点;移项是难点。 〔教学方法〕指导探究,合作交流 〔教学资源〕小黑板 [教学过程] 一、问题导入 一元一次方程有这样的特点:一边是含有未知数的项,一边是常数项。这样的方程我们可以用合并同类项来解,那么像3x+7=32-2x这样的方程怎么解呢? 二、移项的概念 问题:把一些图书分给某班学生阅读,如果每人3本,则剩余20本;如果每人4本,则还缺25本,这个班有多少学生? 设这个班有x人,那么这批书有多少本?还可以怎么表示? 这批书共有(3x+20)本,还可表示为(4x-25)本。 因为3x+20与4x-25都表示这批书,所以 3x+20=4x-25 由上节课的学习,你能猜想怎么解这个方程吗? 把未知项移一到边,把常数项移到一边。 怎样才能做到这一点呢? 由等式的性质,把等式两边同时减去4x,加上20。即 -4x-20 -4x-20 3x+20 = 4x-25 ① 3x-4x=-20-25 ② 比较①、②,方程中的项4x与20发生了怎样的变化? 4x从右边移到了左边,并且改变了符号,20从左边移到了右边,并且改变了符号。 像这样,把等式一边的某项变号后移到另一边,叫做移项。 把②合并同类项,得: -x=-45 ∴x=45 所以这个班有45名学生。 注意:表示同一个量的两个不同的式子相等,这是一个基本的等量关系。 思考:上面解方程中“移项”有什么作用? 通过移项,使含未知数的项在等号的一边,常数项在另一边,从而把方程转化为我们熟悉的类型,这就是化归思想的运用。 解方程经常要合并与移项。前面提到的古老代数书中的“对消”和“还原”,指的就是“合并”与“移项”。 三、例题 现在我们来解前面提到的方程。 例1 3x+7=32-2x 解:移项,得:3x+2x=32- 7 合并同类项,得:5x=25 ∴x=5 注意:移项要变号。 四、课堂练习 1、下面的移项对不对?如果不对,错在哪里?应当怎样改正? (1)从3x+6=0得到3x=6; (2从)2x=x-1得到2x= 1-x (3)从2+x-3=2x+1得到2-3-1=2x-x。 2、课本91面(1)~(2); 3、甲粮仓存粮1000吨,乙粮仓存粮798吨,现从甲粮仓运一部分到乙粮仓使甲乙两个粮仓的粮食数量相等,那么应从甲粮仓运出多少吨粮食? 五、课堂小结 1、什么叫做移项?移项的依据是什么? 2、移项法解一元一次方程要注意什么? 移项要注意变号。 3、我们知道了哪些基本的等量关系? 总量=部分量的和; 表示同一个量的两个不同的式子相等. 作业: 课本2;3(3)、(4);8;9。 六、板书设计: 3.2.2解一元一次方程——移项(2) 一、问题导入 二、探索移项解一元一次方程 三、例题 四、练习 七、课后反思: 3.2.3一元一次方程的应用(一) [教学目标]1、掌握用一元一次方程解决实际问题的基本思想;2、进一步经历用方程解决实际问题的过程,体会运用方程解决实际问题的一般方法。 [重点难点]运用一元一次方程解决简单的实际问题是重点;寻找等量关系是难点。 教学方法〕指导探究,合作交流 〔教学资源〕小黑板 [教学过程] 一、目标导入 前面我们通过简单的实际问题研究了一元一次方程的解法,今天我们就来运用一元一次方程解决简单的实际问题。 二、例题 例1 有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1701,这三个数各是多少? 分析:从符号与绝对值两方面观察,这列数有什么规律? 符号正负相间;后者的绝对值是前者绝对值的3倍。即后一个数是前一个数的-3倍。 如果设其中一个数为x,那么后面与它相邻的两个数你能用x表示出来吗? 后面两数分别是-3x,9x。 问题中的相等关系是什么? 三个相邻数的和=-1701。 由此可得方程 x-3 x+9x=-1701 解之,得x=-243。 所以这三个数是-243,729,-218。 注意:本题中有三个未知量,由它们之间的关系,我们可以用一个字母来表示,从而列出一元一次方程。这一点要注意学习。 例2 根据下面的两种移动电话计费方式表,考虑下列问题。 方式一 方式二 月租费 30元/月 0元 本地的通话费 0.30元/分 0.4元/分 (1)一个月内在本地通话200分和350分,按方式一需交费多少元?按方式二呢? (2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗? 分析:(1)按方式一在本地通话200分钟需要交费多少元?350分钟呢? 通话200分钟需要交费:30+200×0.3=90元; 通话350分钟需要交费:30+350×0.3=135元. 按方式二在本地通话200分钟需要交费多少元?350分钟呢? 通话200分钟需要交费:200×0.4=80元; 通话350分钟需要交费:350×0.4=140元. (2)设累计通话t分钟,那么按方式一要收费多少元?按方式二收费多少元? 按方式一要收费(30+0.3t)元;按方式二要收费0.4t元. 问题中的等量关系是什么? 方式一的收费=方式二的收费. 由此可列方程 30+0.3t=0.4t 解之,得 t =300 所以,当一个月内通话300分钟时,两种计费方式的收费一样多. 引申:你知道怎样选择计费方式更省钱吗? 当t=400时, 30+0.3t=30+0.3×400=150元; 0.4t=0.4×400=160元. 当时间大于300分钟时,方式一更省钱. 三、一元一次方程解实际问题的基本过程 将实际问题转化为数学问题即建立数学模型,通过解决数学问题来解决实际问题。 四、课堂练习 学校办了储蓄所,开学时,李英存了200元,王建存了140元,以后李英每月存20元,王建每月存35元,经过几个月,李英、王建的存款数相等? 五、课堂小结 本节课我们研究了通过列一元一次方程,把实际问题抽象成数学问题即建立数学模型,再通过解一元一次方程即解决数学问题来解决实际问题的具体方法,这是解决实际问题的一般思想方法。 作业: 课本94面6、7、10。 六、板书设计: 3.2.3一元一次方程的应用(一) 一、问题导入 二、探索一元一次方程解实际问题的基本过程 三、例题 四、练习 七、课后反思: 3.3.1解一元一次方程-去括号(1) [教学目标]1、掌握含有括号的一元一次方程的解法;2、经历运用方程解决实际问题的过程,进一步体会方程模型的作用。 [重点难点]含有括号的一元一次方程的解法是重点;括号前面是负号时去括号是难点。 〔教学方法〕指导探究,合作交流 〔教学资源〕小黑板 [教学过程] 一、导入新课 前面我们已经学会了运用移项、合并同类项来解一元一次方程,但当问题中的数量关系较复杂时,列出的方程也会较复杂,解方程的步骤也相应更多些,如下面的问题。 二、探索去括号解一元一次方程 问题 某加工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电150万度,这个工厂去年上半年每月平均用电多少度? 分析:问题中的等量关系是什么? 上半年用电度数+下半年用电度数=1500000。 设去年上半年平均用电x度,那么下半年每月平均用电多少度?上半年共用电多少度?下半年共用电多少度? 下半年每月平均用电(x-2000)度;上半年共用电6 x度;下半年共用电6(x-2000)度。 由此可得方程:6 x+6(x-2000)=1500000 这个方程中含有括号,怎样才能转化为我们熟悉的形式呢?去括号。 去括号,得6 x+6x-12000=1500000 解得 x=13500 所以这个工厂去年上半年每月平均用电13500度。 思考:你还有其它的解法吗? 设去年下半年平均用电x度,则 6x+6(x+2000)=1500000 解之,得x=11500 所以去年上半年每月平均用电11500+2000=13500度。 三、例题 例1 解方程:3x-7(x-1)=3-2(x+3) 解:去括号,得:3x-7x+7=3-2x-6 合并,得:-4x+7=-2x-3 移项,得:-4x+2x =-3-7 -2x =-10 ∴x =5 注意:括号外面是负号时,去括号后,括号内的每一项的积都要变号。 四、课堂练习 1、课本97面(1)、(2)。 2、初一某班同学准备组织去东湖划船,如果减少一条船,每条船正好坐9名同学,如果增加一条船,每条船正好坐6名同学,问这个班共有多少名同学? 五、课堂小结 1、含有括号的一元一次方程的解法。 当括号外面是负号,去掉括号后,要注意变号。 2、解一元一次方程的步骤: ①去括号;②移项;③合并同类项;④系数化为1。 3、例题解法一是求什么设什么,叫直接设元法,方程的解就是问题的答案;解法二不是求什么设什么,叫间接设元法,方程的解并不是问题的答案,需要根据问题中的数量关系求出最后的答案。 作业: 课本102面1、2、4、5。 六、板书设计: 3.3.1解一元一次方程-去括号(1) 一、问题导入 二、探索去括号解一元一次方程 三、例题 四、练习 七、课后反思: 3.3.2解一元一次方程 —— 去括号(2) [教学目标]1、进一步掌握列一元一次方程解应用题;2、通过分析“顺逆水”和“配套”问题,进一步经历运用方程解决实际问题的过程,体会方程模型的作用。 [重点难点]分析题意、找等量关系和列方程是重点;找出能够表示问题全部含义的相等关系是难点。 〔教学方法〕指导探究,合作交流 〔教学资源〕小黑板 [教学过程] 一、复习导入 上节课我们学习了解含有括号的一元一次方程,现在我们来解两道题: (1)2(x+3)=2.5(x-3);(2)2×1200x=2000(22-x) 怎样运用这样的方程来解决实际问题呢?今天我们就来讨论一下。 二、例题 例1 一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时。已知水流的速度是3千米/时,求船在静水中的平均速度。 分析:顺流行驶的速度、逆流行驶的速度、水流的速度、静水中的速度之间有什么关系? 顺流的速度=静水中的速度+水流的速度; 逆流的速度=静水中的速度-水流的速度。 问题中的相等关系是什么? 顺水行驶的路程=逆水行驶的路程。 设船在静水中的平均速度为x千米/时,那么顺流的速度是什么?逆流的速度是什么? 顺流的速度是(x+3)千米/时逆流的速度是(x-3)千米/时。 由些可得方程 2(x+3)=2.5(x-3) 由前面的解答,知x=27 所以船在静水中的速度是27千米/时。 注意:要牢牢记住顺流的速度=静水中的速度+水流的速度;逆流的速度=静水中的速度-水流的速度。 例2 某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母? 分析:当问题中的量比较多,关系比较复杂时,我们可以把量分成两类列表,从而使条件条理化,如下表所示: 请设未知数,填上表。 问题中的等量关系是什么? 螺母的数量=2×螺钉的数量。 由此,可列方程 2×1200x=2000(22-x) 由前面的解答可知x=10 22-x=22-10=12 所以应分配10名工人生产螺钉,12名工人生产螺母。 注意:列表法是列方程解应用题的一种行之有效的方法,有注意学习。 三、课堂练习 在一次美化校园活动中,先安排31人去拔草,18人去植树,后又是增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人分别有多少人? 四、课堂小结 通过前面的学习讨论,我们进一步体会到列方程解决实际问题的关键是正确地建立方程中的相等关系;同时知道所列方程的解不一定就是问题的答案,必须检验之后才能确定,这是一个要注意的问题。 作业:课本102面6、7、11。 五、板书设计: 3.3.1解一元一次方程-去括号(2) 一、问题导入 二、探索去括号解一元一次方程 三、例题 四、练习 七、课后反思: 3.3.3解一元一次方程——去分母(1) [教学目标]1、掌握含有分母的一元一次方程的解法;2、归纳解一元一次方程的步骤,体会转化的思想方法。 [重点难点]解含有分母的一元一次方程是重点;去分母时适当地添括号是难点。 〔教学方法〕指导探究,合作交流 〔教学资源〕小黑板 [教学过程] 一、问题导入 英国伦敦博物馆保存着一部极其珍贵的文物——纸莎草文书,其中有如下一道著名的末知数的问题: 一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。 设这个数为x,可得方程 2/3x+1/2x+1/7x+x=33 当时埃及人如果把问题写成这种形式,它一定是“最早”的方程。 这种方程与我们前面学习的方程有什么不同? 有些系数是分数。 今天我们就来学习这种含有分数系数方程的解法。 二、含有分母的一元一次方程的解法和步骤 1、探索方法 请你用自己的方法试着解上答上面的方程。 学生自主解方程,教师收集不同的解法,比较直接合并同类项和先去分母解法的难易。 显然,通过先去母把方程转化为我们熟悉的形式来解比较简单。 现在我们来看一个例子。 例1 解方程: 怎样去分母?去分母的依据是什么? 方程左右两边同时乘以分母的最小公倍数;依据是等式的性质2。 下面去分母的结果正确吗?如果不正确,请说明理由。 ①15x+1-20=3x-2-2x+3; ②5×(3x+1)-2=3x-2-(2x+3); ③5×(3x+1)-20=3x-2-(2x+3)。 ①不正确,原因是去括号后,分子没有加括号;②不正确,原因是漏乘了“-2”这一项;③是正确的。 学生写出解答过程,结果是x=7/16。 注意:去分母时,方程两边的每一项都要乘,不能漏项;去分母后,分子要加上括号。 2、归纳步骤 请大家总结一下,解一元一次方程有哪些步骤? ①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。 这些步骤的依据是等式的性质和乘法分配律。 注意:上述步骤不是一陈不变的,要根据方程的特点,灵活处理,如有时可以先合并同类项再移项。 三、例题 解方程: 解:去分母,得18x+3(x-1)=18-2(2x-1) 去括号,得18x+3x-3=18-4x+2 合并同类项,得21x-3=20-4x 移项,得 21x+4x=20+3 合并同类项,得25x=23 系数化为1 得x=23/25 四、课堂练习 课本101面(1)、(2)题。 补充题: (3);(4)y-. 五、课堂小结 1、解一元一次方程主要是化归思想,通过去分,去括号,合并同类项,系数化为1,一步一步化为最简形式x=a. 2、解一元一次方程的步骤: ①这些步骤的主要依据是等式的性质和运算律; ②这些步骤不是一成不变的,要灵活掌握。 3、去分母时要注意的问题: ①没有分母的项不要漏乘; ②去掉分数线,同时要把分子加上括号。 作业: 课本102面3、10、14。 六、板书设计: 3.3.3解一元一次方程——去分母(1) 一、问题导入 二、含有分母的一元一次方程的解法和步骤 三、例题 四、课堂练习 七、课后反思: 3.3.4解一元一次方程—去分母(2) [教学目标]1、进一步掌握利用一元一次方程解决实际问题;2、经历分析“工程问题”中数量关系过程,培养分析问题和解决问题的能力。 [重点难点]工程问题中的工作量、工作效率、工作时间的关系是重点,把全部工作量看作1是难点。 〔教学方法〕指导探究,合作交流 〔教学资源〕小黑板 [教学过程] 一、复习导入 在小学里我们学习过工程问题,知道这类问题中有工作量、工作时间和工作效率这三种量。那么工作量、工作时间和工作效率之间有怎样的关系呢? 工作量=工作时间×工作效率 如果一件工作甲独做a小时完成,那么甲独做1小时可完成多少工作量? 二、例题 例1 整理一批图书,由一个人做要40小时完成。现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体应先安排多少人工作? 分析:一个人的工作效率是多少?1/40。 问题中的等量关系是什么? 增加工人前完成的工作量+增加工人后完成的工作量=1 设先安排x人工作,则x人4小时完成的工作量是多少?4x/40。 增加2人和“他们”(即x人)一起工作8小时完成的工作量是多少?8(x+2)/40。 由此可得方程 4x/40+8(x+2)/40=1 学生解方程,得x=2。 答:应先安排2名工人工作4小时。 例2 水池有一个进水管,6小时可注满空池,池底有一个出水管,8小时可放完满池的水,如果同时打开进水管和出水管,那么多少小时可以把空池注满? 分析:问题中的等量关系是什么? 注入的水量-放出的水量=1 设x小时可以把空池注满,那么注入的水量是多少?放出的水量是多少?1/6x;1/8x。 由此可得方程 1/6x-1/8x=1 解得x=24。 答:24小时可以把空池注满。 三、课堂练习 某地下管道由甲队单独铺设需要3天完成,乙队单独铺设要5天完成,甲队铺设了1/5的工作量后,为了加快进度,乙队加入,从另一端铺设,问管道铺好,乙队做了多少天? 四、课堂小结 工程问题中要善于把握什么是总工作量,总工作量可以看成“1”;工程问题中的等量关系一般是各部分完成的工作量之和等于总工作量“1”。 作业: 课本102面12、8、9。 五、板书设计: 3.3.4解一元一次方程—去分母(2) 一、问题导入 二、例题 三、课堂练习 六、课后反思: 3.4.1销售中的盈亏 [教学目标]1、理解商品销售中所涉及的进价、售价、利润和利润率等概念;2、能利用一元一次方程解决商品销售中的实际问题。 [重点难点] 利用一元一次方程解决商品销售中的实际问题是重点;打折和找相等关系是难点。 〔教学方法〕指导探究,合作交流 〔教学资源〕小黑板 [教学过程] 一、导入新课 数学源于生活,又服务于生活。方程是解决实际问题的一种很有用的数学工具。本节我们将进一步探究如何用一元一次方程解决实际问题。 二、例题 例1 某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏? 分析:进价、售价和利润之间有什么关系?什么是利润率? 利润=售价-进价;利润率=利润/进价×100%. 本题看是否盈利还是亏损的依据是什么? 依据是看卖出两件衣服盈利与亏损谁大。 现在我们来看卖出盈利25%的这件衣服盈利多少。 设盈利25%的这件衣服进价是x元,可得怎样的方程? 0.25x=60-x 解之,得x=48 所以这件衣服利润是60-48=12元。 再来看亏损25%的这件衣服亏损多少元。 设亏损25%的这件衣服进价是y元,可得怎样的方程? -0.25y=60-y 解之,得y=80 所以这件衣服的利润是60-80=-20元。 因此,卖这两件衣服亏损了8元。 注意:盈利时利润率通常用正数表示,所以亏损时利润率是负数。 例2 某种商品零售价每件900元,为了适应市场的竞争,商店按零售价的9折降价并让利40元销售,仍可获利10%,则这种商品进货每件多少元? 分析:问题中的等量关系是什么? 实际售价-40-进价=利润。 设这种子商品进货每件x元,那么实际售价是多少?利润是多少? 实际售价是900×9/10,利润是10%x。 由此可得方程为 900×9/10-40-x=10%x 解之,得 x=700 所以这种商品进货每件700元。 三、课堂练习 ]一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元? 四、课堂小结 1、商品销售问题中的基本等量关系: 利润=售价-进价 利润率=利润/进价×100% 打x折的售价=原售价×x/10 2、恰当地运用商品销售问题中的基本等量关系是解决这类问题的关键。 作业:108面3、4题。 补充题:某商场因换季准备处理一批羊绒衫,若每件绒衫按标价的六折出售将亏110元,而按标价的八折出售每件将赚70元,问每件羊绒衫的标价是多少元?进价是多少元?[提示:进价不变。] 五、板书设计: 3.4.1销售中的盈亏 一、问题导入 二、例题 三、课堂练习 六、课后反思: 3.4.2油菜种植的计算 [教学目标]1、学会解决有关百分率问题;2、经历探究“油菜种植”问题的过程,进一步提高分析问题和解决问题的能力。 [重点难点] 解决有关百分率问题是重点;寻找相等关系是难点。 〔教学方法〕指导探究,合作交流 〔教学资源〕小黑板 [教学过程] 一、导入新课 上节课我们探究了“销售中的盈亏”问题,使我们进一步感受到一元一次方程作为实际问题的数学模型的作用。本节课我们再来探究农业生产中的一个较复杂的问题——油菜种植的计算。 二、例题 某村去年种植的油菜籽亩产量达160千克,含油率40%,今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点。 (1)今年与去年相比,这个村的油菜种植面积减少了44亩,而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜种植面积是多少? (2)油菜种植成本为210元/亩,菜油收购价为6元/千克,请比较这个村去今两年油菜种植成本与将菜油全部售出所获收入。 分析:(1)我们先来弄清楚什么是产油量? 产油量=油菜籽亩产量×含油率 当题目中的数量关系比较复杂时,运用列表法可以较方便的处理问题。请你找出问题中的两类量并列出草表。 设今年油菜种植面积为x亩,请填表: 今 年 去 年 种植面积 x x +44 亩产量 160+20 160 含油率 (10+40)% 40% 产油量 (160+20)×(10+40)%·x 160×40%·(x +44) 问题中的等量关系是什么? 今年的产油量=去年的产油量(1+20%) 由此得方程 (160+20)×(10+40)%·x=160×40%·(x +44)·(1+20%) 解之,得 x=256 所以今年油菜种植面积是256亩。 (2)去年油菜种植成本是多少?售油收入是多少? 油菜种植成本是:210(x +44)=210×300=63000元; 售油收入是:6×160×40%×300=115200元。 今年油菜种植成本是多少?售油收入是多少? 油菜种植成本是:210x =210×256=53760元; 售油收入是:6×180×50% x =6×180×50%×256=138240元。 因此,今年比去年种植油菜的成本减少了: 6300-53760=9240元 今年比去年售油收入增加了: 138240-115200=23040元- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 七年 级数 上册 第三 一元一次方程 整章 教案 习题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文