平行四边形性质教学案例.doc
《平行四边形性质教学案例.doc》由会员分享,可在线阅读,更多相关《平行四边形性质教学案例.doc(4页珍藏版)》请在咨信网上搜索。
平行四边形的性质教学案例 数学组 黄燕 一、教学设想: 教学活动是教与学的双边相互促进活动,在教学活动中,学生是学习的主体。为使几何课上得有趣、生动、高效,结合本节课内容和学生的实际水平,采用学生实验发现法为主的教学方法。在教学过程中,通过设置带有启发性和思考性的问题,创设问题情景,直接从生活实践的应用引入课题,而后提出问题,诱导学生思考,让学生亲身体验知识的产生过程,激发学生探求知识的欲望,使学生始终处于主动探索问题的积极状态,使获取新知识水到渠成。让学生自主探究平行四边形的性质,给学生提供体验主动学习和探索的过程和经历。 二、学习任务分析: 充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。 三、学生的认知起点分析: 学生通过前面的学习已了解了平行四边形的概念及特征,掌握了平行四边形的对边、对角的关系,这为探究平行四边形的性质做好了知识上的准备。另外,学生也具备了利用已知条件作平行四边形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。 四、教学目标: 1、掌握平行四边形的性质定理“平行四边形的对角线互相平分”。 2、通过尝试从不同角度寻求解决问题的方法,经历探索平行四边形性质的过程。 3、通过探索平行四边形的性质,进一步发展学生的逻辑推理能力及条理的表达能力。 4、会应用平行四边形的上述定理解决简单几何问题。 重点与难点:重点是平行四边形的性质定理“平行四边形的对角线互相平分”。而例3比较复杂,并要求一题多解,是本节教学的难点。 五、主要教学流程: 1、概念复习,情景引入。 画一个口ABCD,在这个图形中有那些线段相等? 这体现了平行四边形的哪些性质?怎样发现这些性质的? (通过回忆并再现旧知识的产生过程,让学生积累学习知识的方法,为新课做准备。) 2、自主研究,探索新知。 画出平行四边形ABCD的对角线AC和BD,它们交于点O。你还能得到图形有那些线段相等? 在让AC与BD画好后,细心观察,鼓励学生应用多种方式探索平行四边形的性质,可用三角板量一量,也可采用其他的方法。(初步尝试,体验产生悬念,造成认知冲突,激发学生探索的欲望。) 3、交流归纳,获得新知。 (1)学生观察、讨论,并进行小组交流。通过以上活动,你能得到哪些结论?并由各小组派学生表述看法。 (2)学生动手量,有的学生讨论如何进行折叠,动脑思考,议论,有的学生在思考如何证明OA=OC,OB=OD,有的学生讨论找全等三角形,最后得到:OA=OC,OB=OD。 在学生得到OA=OC,OB=OD的基础上,概括出平行四边形的对角线的性质(若学生不能进行很好的叙述,可提示学生采用仿照性质定理1的方法进行叙述):平行四边形的对角线互相平分。 (3)例题分析例1已知:如上图,在口ABCD中,对角线AC,BD交于点O。求证:OA=OC,OB=OD。 证明:∵在口ABCD中,AD∥BC(平行四边形的定义) ∴∠1=∠2, ∠3=∠4(两直线平行,内错角相等)。 又∵AD=BC(平行四边形的对边相等)。 ∴⊿AOD≌⊿COB(ASA)。 ∴OA=OC,OB=OD(全等三角形的对应边相等)。 4、学以致用,形成技能 (一)例2已知:如图, 口ABCD的对角线AC,BD交于点O。过点O作直线EF,分别交AB,CD于点E,F。求证:OE=OF。 (2)开展讨论。——发现△DOF与△BOE,△COF与△AOE可能全等。 点拨:欲证OE=OF,需证明哪两个三角形全等?在发现的两对三角形中先找角等,再找边等。 (2)在本题证明完后,教师结合图形的适当变换对学生进行变式训练(主要结合下面的图形),而且在学生的解答中主要是思路的总结,帮助学生总结出该类题目解答的要求: ①利用平行四边形的对边的性质;②利用平行四边形对角线的性质;③寻找到合适的全等三角形来证明线段相等。 (二)例3、如图:四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长及口ABCD的面积。 解:∵ 四边形ABCD是平行四边形,∴AB=CD=10, AD=BC=8 ∵ AC⊥BC,∴ΔABC是直角三角形。 AC= = =6。 又 OA=OC ∴ OA= AC=3,∴S口ABCD=BC·AC=8×6=48。 5、课堂训练: (1 )、在口ABCD中,AC和BD交于点O,AB=4,△AOB的周长为16,求AC+BD的长度。 (2)、在口ABCD中,过AC的中点O的直线分别交CB,AD的延长线于点E,F。求证:BE=DF。 点拨:解题的关键是找出入手点:第一题的入手点是△AOB的周长为16;第二题的入手点是O是AC的中点。 (3)、已知O是口ABCD两条对角线的交点,AC=24cm,BC=38cm,OD=28cm,则⊿OBC的周长为__________。 (4)、有没有这样的平行四边形,它的两条对角线长分别为14cm和20cm,它的一边长为18cm?为什么?若平行四边形的边长为xcm,则x的取值范围为多少? (5)、如图,口ABCD的对角线AC,BD相交于点O。已知AB=5cm,△AOB的周长和△BOC的周长相差3cm,则AD的长为__________。 (6)、口ABCD的周长为40cm,⊿ABC的周长为25cm,则对角线AC长为( )A、5cmB、15cmC、6cmD、16cm (7)、如图,口ABCD的两条对角线相交于点O。 ①图中有多少对全等三角形?请把它们写出来; ②图中有多少对面积相等的三角形? (通过多角度练习,巩固所学内容,同时将新知识迁移到新的情景中。诱导学生主动探索,通过学生的活动,激发学生的思维,培养学生的探索能力和合作精神。) 6、巩固练习 例4、如图,在口ABCD中对角线AC,BD交于点E,AC⊥BC,AC=4,AB=5,求BD的长? (请说说你的解题思路,) 例5、变式训练:(1)已知口ABCD中,AE⊥BD,AF⊥BD,垂足为E、F,求证:EB=DF 证明:∵AE⊥BD,CF⊥BD,∴∠AEB=90°,∠CFD=90° ∴∠AEB=∠CFD,又四边形ABCD是平行四边形 ∴AB=CD,∠ABE=∠CDF ∴⊿ABE≌⊿CDF。∴BE=DF (2)已知:如图, ABCD的对角线AC与BD相交于点O,E、F分别为OA,OC的中点。求证:△OBE≌△ODF。 (3)已知如下图,在ABCD中,AC与BD相交于点O,点E、F在AC上,且BE∥DF。求证:BE=DF。 证明:∵BE∥DF ∴∠BEO=∠DFO( ) ∵四边形ABCD是平行四边形 ∴OB=OD( ) 又∠BOE=∠DOF ∴⊿BOE≌⊿DOF( ) ∴BE=DF( ) 例6、已知:如图,在△ABC中,D,E分别是AB,AC上的点,∠1=∠2。求证:∠B=∠ADE。 7、构建新知、培养能力: A、学生复述平行四边形的性质。 方式一、结合平行四边形的定义和三个性质进行叙述: 方式二、将平行四边形的相关元素采用边、角、对角线的思路加以整理。 B、让学生谈谈通过本节课的学习说一句自己最想说的话。教师有针对性的对各个层面的学生给予激励评价,特别对于平时表现不是很好的学生以及学习兴趣不高的学生这节课的表现给予肯定,激发他们的上进心和自信心。 自我小结,明确这节课的目标,实现自我反馈,从而构建起自己的知识经验,形成自己的见解。 六、教学反思: 数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。这节课的教学实现了三个方面的转变: ① 教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生“教”你他们活动的过程和通过活动所得的知识或方法。 ② 学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地“学”数学,而是深入地“做”数学。 ③ 课堂氛围的转变:整节课以 “流畅、开放、合作、‘隐'导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平行四边形 性质 教学 案例 doc
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文