多元线性回归模型案例.doc
《多元线性回归模型案例.doc》由会员分享,可在线阅读,更多相关《多元线性回归模型案例.doc(25页珍藏版)》请在咨信网上搜索。
我国农民收入影响因素的回归分析 本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。 农民收入水平的度量常采用人均纯收入指标。影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。但可以归纳为以下几个方面:一是农产品收购价格水平。二是农业剩余劳动力转移水平。三是城市化、工业化水平。四是农业产业结构状况。五是农业投入水平。考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。 一、计量经济模型分析 (一)、数据搜集 根据以上分析,我们在影响农民收入因素中引入7个解释变量。即: -财政用于农业的支出的比重, -第二、三产业从业人数占全社会从业人数的比重, -非农村人口比重, -乡村从业人员占农村人口的比重, -农业总产值占农林牧总产值的比重, -农作物播种面积,—农村用电量。 y x2 x3 x4 x5 x6 x7 x8 年份 78年可比价 比重 % % 比重 比重 千公顷 亿千瓦时 1986 133.60 13.43 29.50 17.92 36.01 79.99 150104.07 253.10 1987 137.63 12.20 31.30 19.39 38.62 75.63 146379.53 320.80 1988 147.86 7.66 37.60 23.71 45.90 69.25 143625.87 508.90 1989 196.76 9.42 39.90 26.21 49.23 62.75 146553.93 790.50 1990 220.53 9.98 39.90 26.41 49.93 64.66 148362.27 844.50 1991 223.25 10.26 40.30 26.94 50.92 63.09 149585.80 963.20 1992 233.19 10.05 41.50 27.46 51.53 61.51 149007.10 1106.90 1993 265.67 9.49 43.60 27.99 51.86 60.07 147740.70 1244.90 1994 335.16 9.20 45.70 28.51 52.12 58.22 148240.60 1473.90 1995 411.29 8.43 47.80 29.04 52.41 58.43 149879.30 1655.70 1996 460.68 8.82 49.50 30.48 53.23 60.57 152380.60 1812.70 1997 477.96 8.30 50.10 31.91 54.93 58.23 153969.20 1980.10 1998 474.02 10.69 50.20 33.35 55.84 58.03 155705.70 2042.20 1999 466.80 8.23 49.90 34.78 57.16 57.53 156372.81 2173.45 2000 466.16 7.75 50.00 36.22 59.33 55.68 156299.85 2421.30 2001 469.80 7.71 50.00 37.66 60.62 55.24 155707.86 2610.78 2002 468.95 7.17 50.00 39.09 62.02 54.51 154635.51 2993.40 2003 476.24 7.12 50.90 40.53 63.72 50.08 152414.96 3432.92 2004 499.39 9.67 53.10 41.76 65.64 50.05 153552.55 3933.03 2005 521.20 7.22 55.20 42.99 67.59 49.72 155487.73 4375.70 资料来源《中国统计年鉴2006》。 (二)、计量经济学模型建立 我们设定模型为下面所示的形式: 利用Eviews软件进行最小二乘估计,估计结果如下表所示: Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C -1102.373 375.8283 -2.933184 0.0136 X1 -6.635393 3.781349 -1.754769 0.1071 X3 18.22942 2.066617 8.820899 0.0000 X4 2.430039 8.370337 0.290316 0.7770 X5 -16.23737 5.894109 -2.754847 0.0187 X6 -2.155208 2.770834 -0.777819 0.4531 X7 0.009962 0.002328 4.278810 0.0013 X8 0.063389 0.021276 2.979348 0.0125 R-squared 0.995823 Mean dependent var 345.5232 Adjusted R-squared 0.993165 S.D. dependent var 139.7117 S.E. of regression 11.55028 Akaike info criterion 8.026857 Sum squared resid 1467.498 Schwarz criterion 8.424516 Log likelihood -68.25514 F-statistic 374.6600 Durbin-Watson stat 1.993270 Prob(F-statistic) 0.000000 表1 最小二乘估计结果 回归分析报告为: 二、计量经济学检验 (一)、多重共线性的检验及修正 ①、检验多重共线性 (a)、直观法 从“表1 最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4 x6的t统计量并不显著,所以可能存在多重共线性。 (b)、相关系数矩阵 X2 X3 X4 X5 X6 X7 X8 X2 1.000000 -0.717662 -0.695257 -0.731326 0.737028 -0.332435 -0.594699 X3 -0.717662 1.000000 0.922286 0.935992 -0.945701 0.742251 0.883804 X4 -0.695257 0.922286 1.000000 0.986050 -0.937751 0.753928 0.974675 X5 -0.731326 0.935992 0.986050 1.000000 -0.974750 0.687439 0.940436 X6 0.737028 -0.945701 -0.937751 -0.974750 1.000000 -0.603539 -0.887428 X7 -0.332435 0.742251 0.753928 0.687439 -0.603539 1.000000 0.742781 X8 -0.594699 0.883804 0.974675 0.940436 -0.887428 0.742781 1.000000 表2 相关系数矩阵 从“表2 相关系数矩阵”中可以看出,个个解释变量之间的相关程度较高,所以应该存在多重共线性。 ②、多重共线性的修正——逐步迭代法 A、 一元回归 Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C 820.3133 151.8712 5.401374 0.0000 X2 -51.37836 16.18923 -3.173614 0.0056 R-squared 0.372041 Mean dependent var 345.5232 Adjusted R-squared 0.335102 S.D. dependent var 139.7117 S.E. of regression 113.9227 Akaike info criterion 12.40822 Sum squared resid 220632.4 Schwarz criterion 12.50763 Log likelihood -115.8781 F-statistic 10.07183 Durbin-Watson stat 0.644400 Prob(F-statistic) 0.005554 表3 y对x2的回归结果 Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C -525.8891 64.11333 -8.202492 0.0000 X3 19.46031 1.416043 13.74274 0.0000 R-squared 0.917421 Mean dependent var 345.5232 Adjusted R-squared 0.912563 S.D. dependent var 139.7117 S.E. of regression 41.31236 Akaike info criterion 10.37950 Sum squared resid 29014.09 Schwarz criterion 10.47892 Log likelihood -96.60526 F-statistic 188.8628 Durbin-Watson stat 0.598139 Prob(F-statistic) 0.000000 表4 y对x3的回归结果 Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C -223.1905 69.92322 -3.191937 0.0053 X4 18.65086 2.242240 8.317956 0.0000 R-squared 0.802758 Mean dependent var 345.5232 Adjusted R-squared 0.791155 S.D. dependent var 139.7117 S.E. of regression 63.84760 Akaike info criterion 11.25018 Sum squared resid 69300.77 Schwarz criterion 11.34959 Log likelihood -104.8767 F-statistic 69.18839 Durbin-Watson stat 0.282182 Prob(F-statistic) 0.000000 表5 y对x4的回归结果 Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C -494.1440 118.1449 -4.182526 0.0006 X5 15.77978 2.198711 7.176832 0.0000 R-squared 0.751850 Mean dependent var 345.5232 Adjusted R-squared 0.737253 S.D. dependent var 139.7117 S.E. of regression 71.61463 Akaike info criterion 11.47978 Sum squared resid 87187.14 Schwarz criterion 11.57919 Log likelihood -107.0579 F-statistic 51.50691 Durbin-Watson stat 0.318959 Prob(F-statistic) 0.000002 表6 y对x5的回归结果 Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C 1288.009 143.8088 8.956395 0.0000 X6 -15.52398 2.351180 -6.602635 0.0000 R-squared 0.719448 Mean dependent var 345.5232 Adjusted R-squared 0.702945 S.D. dependent var 139.7117 S.E. of regression 76.14674 Akaike info criterion 11.60250 Sum squared resid 98571.54 Schwarz criterion 11.70192 Log likelihood -108.2238 F-statistic 43.59479 Durbin-Watson stat 0.395893 Prob(F-statistic) 0.000004 表7 y对x6的回归结果 Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C -4417.766 681.1678 -6.485577 0.0000 X7 0.031528 0.004507 6.994943 0.0000 R-squared 0.742148 Mean dependent var 345.5232 Adjusted R-squared 0.726980 S.D. dependent var 139.7117 S.E. of regression 73.00119 Akaike info criterion 11.51813 Sum squared resid 90595.96 Schwarz criterion 11.61754 Log likelihood -107.4222 F-statistic 48.92923 Durbin-Watson stat 0.572651 Prob(F-statistic) 0.000002 表8 y对x7的回归结果 Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C 140.1625 28.96616 4.838835 0.0002 X8 0.119827 0.014543 8.239503 0.0000 R-squared 0.799739 Mean dependent var 345.5232 Adjusted R-squared 0.787959 S.D. dependent var 139.7117 S.E. of regression 64.33424 Akaike info criterion 11.26536 Sum squared resid 70361.21 Schwarz criterion 11.36478 Log likelihood -105.0209 F-statistic 67.88941 Durbin-Watson stat 0.203711 Prob(F-statistic) 0.000000 表9 y对x8的回归结果 综合比较表3~9的回归结果,发现加入x3的回归结果最好。以x3为基础顺次加入其他解释变量,进行二元回归,具体的回归结果如下表10~15所示: Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C -754.4481 149.1701 -5.057637 0.0001 X3 21.78865 1.932689 11.27375 0.0000 X2 13.45070 8.012745 1.678663 0.1126 R-squared 0.929787 Mean dependent var 345.5232 Adjusted R-squared 0.921010 S.D. dependent var 139.7117 S.E. of regression 39.26619 Akaike info criterion 10.32254 Sum squared resid 24669.34 Schwarz criterion 10.47167 Log likelihood -95.06417 F-statistic 105.9385 Durbin-Watson stat 0.595954 Prob(F-statistic) 0.000000 表10 加入x2的回归结果 Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C -508.6781 75.73220 -6.716802 0.0000 X3 17.88200 3.752121 4.765837 0.0002 X4 1.753351 3.844305 0.456090 0.6545 R-squared 0.918481 Mean dependent var 345.5232 Adjusted R-squared 0.908291 S.D. dependent var 139.7117 S.E. of regression 42.30965 Akaike info criterion 10.47185 Sum squared resid 28641.71 Schwarz criterion 10.62097 Log likelihood -96.48254 F-statistic 90.13613 Durbin-Watson stat 0.596359 Prob(F-statistic) 0.000000 表11 加入x4的回归结果 Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C -498.1550 67.21844 -7.410986 0.0000 X3 23.97516 3.967183 6.043370 0.0000 X5 -4.320566 3.553466 -1.215874 0.2417 R-squared 0.924405 Mean dependent var 345.5232 Adjusted R-squared 0.914956 S.D. dependent var 139.7117 S.E. of regression 40.74312 Akaike info criterion 10.39639 Sum squared resid 26560.02 Schwarz criterion 10.54551 Log likelihood -95.76570 F-statistic 97.82772 Durbin-Watson stat 0.607882 Prob(F-statistic) 0.000000 表12 加入x5的回归结果 Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C -1600.965 346.9265 -4.614709 0.0003 X3 29.93768 3.534753 8.469528 0.0000 X6 9.980135 3.184176 3.134291 0.0064 R-squared 0.948835 Mean dependent var 345.5232 Adjusted R-squared 0.942440 S.D. dependent var 139.7117 S.E. of regression 33.51927 Akaike info criterion 10.00606 Sum squared resid 17976.66 Schwarz criterion 10.15518 Log likelihood -92.05754 F-statistic 148.3576 Durbin-Watson stat 1.125188 Prob(F-statistic) 0.000000 表13 加入x6的回归结果 Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C -2153.028 327.1248 -6.581673 0.0000 X3 14.40497 1.358355 10.60472 0.0000 X7 0.012268 0.002447 5.014015 0.0001 R-squared 0.967884 Mean dependent var 345.5232 Adjusted R-squared 0.963869 S.D. dependent var 139.7117 S.E. of regression 26.55648 Akaike info criterion 9.540364 Sum squared resid 11283.94 Schwarz criterion 9.689485 Log likelihood -87.63345 F-statistic 241.0961 Durbin-Watson stat 0.690413 Prob(F-statistic) 0.000000 表14 加入x7的回归结果 Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C -400.5635 103.0301 -3.887832 0.0013 X3 15.54271 2.916358 5.329493 0.0001 X8 0.029233 0.019233 1.519929 0.1480 R-squared 0.927840 Mean dependent var 345.5232 Adjusted R-squared 0.918820 S.D. dependent var 139.7117 S.E. of regression 39.80687 Akaike info criterion 10.34990 Sum squared resid 25353.40 Schwarz criterion 10.49902 Log likelihood -95.32401 F-statistic 102.8643 Durbin-Watson stat 0.559772 Prob(F-statistic) 0.000000 表15 加入x8的回归结果 综合表10~15所示,加入x7的模型的R最大,以x3、x7为基础顺次加入其他解释变量,进行三元回归,具体回归结果如下表16~20所示: Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C -2133.921 340.6965 -6.263406 0.0000 X3 14.96023 2.094645 7.142134 0.0000 X7 0.011843 0.002786 4.250908 0.0007 X2 2.195243 6.170403 0.355770 0.7270 R-squared 0.968153 Mean dependent var 345.5232 Adjusted R-squared 0.961783 S.D. dependent var 139.7117 S.E. of regression 27.31242 Akaike info criterion 9.637224 Sum squared resid 11189.52 Schwarz criterion 9.836053 Log likelihood -87.55363 F-statistic 151.9988 Durbin-Watson stat 0.712258 Prob(F-statistic) 0.000000 表16 加入x2的回归结果 Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C -2226.420 353.4425 -6.299243 0.0000 X3 15.66729 2.443113 6.412839 0.0000 X7 0.012703 0.002589 4.906373 0.0002 X4 -1.601362 2.553294 -0.627175 0.5400 R-squared 0.968705 Mean dependent var 345.5232 Adjusted R-squared 0.962445 S.D. dependent var 139.7117 S.E. of regression 27.07472 Akaike info criterion 9.619741 Sum squared resid 10995.60 Schwarz criterion 9.818571 Log likelihood -87.38754 F-statistic 154.7677 Durbin-Watson stat 0.704178 Prob(F-statistic) 0.000000 表17 加入x4的回归结果 Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C -2110.381 306.2690 -6.890613 0.0000 X3 18.60156 2.617381 7.106937 0.0000 X7 0.012139 0.002285 5.311665 0.0001 X5 -3.964878 2.163262 -1.832823 0.0868 R-squared 0.973760 Mean dependent var 345.5232 Adjusted R-squared 0.968512 S.D. dependent var 139.7117 S.E. of regression 24.79152 Akaike info criterion 9.443544 Sum squared resid 9219.289 Schwarz criterion 9.642373 Log likelihood -85.71367 F-statistic 185.5507 Durbin-Watson stat 0.733972 Prob(F-statistic) 0.000000 表18 加入x5的回归结果 Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C -2418.859 323.7240 -7.471979 0.0000 X3 20.99887 3.397120 6.181374 0.0000 X7 0.009920 0.002495 3.976660 0.0012 X6 5.359184 2.571950 2.083705 0.0547 R-squared 0.975093 Mean dependent var 345.5232 Adjusted R-squared 0.970112 S.D. dependent var 139.7117 S.E. of regression 24.15359 Akaike info criterion 9.391407 Sum squared resid 8750.940 Schwarz criterion 9.590236 Log likelihood -85.21837 F-statistic 195.7489 Durbin-Watson stat 1.084023 Prob(F-statistic) 0.000000 表19 加入x6的回归结果 Dependent Variable: Y Method: Least Squares Sample: 1986 2004 Included observations: 19 Variable Coefficient Std. Error t-Statistic Prob. C -2013- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多元 线性 回归 模型 案例
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文