弧长及扇形面积--讲义.doc
《弧长及扇形面积--讲义.doc》由会员分享,可在线阅读,更多相关《弧长及扇形面积--讲义.doc(14页珍藏版)》请在咨信网上搜索。
学科教师辅导讲义 教学内容 同步知识梳理 1. 圆周长: 圆面积: 2. 圆的面积C与半径R之间存在关系,即360°的圆心角所对的弧长,因此,1°的圆心角所对的弧长就是。 n°的圆心角所对的弧长是 P120 *这里的180、n在弧长计算公式中表示倍分关系,没有单位。 3. 由组成圆心角的两条半径和圆心角所对的弧所围成的圆形叫做扇形。 发现:扇形面积与组成扇形的圆心角的大小有关,圆心角越大,扇形面积也就越大。 4. 在半径是R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积,所以圆心角为n°的扇形面积是: (n也是1°的倍数,无单位) 5. 圆锥的概念 观察模型可以发现:圆锥是由一个底面和一个侧面围成的。其中底面是一个圆,侧面是一个曲面,如果把这个侧面展开在一个平面上,展开图是一个扇形。 如图,从点S向底面引垂线,垂足是底面的圆心O,垂线段SO的长叫做圆锥的高,点S叫做圆锥的顶点。 锥也可以看作是由一个直角三角形旋转得到的。也就是说,把直角三角形SOA绕直线SO旋转一周得到的图形就是圆锥。其中旋转轴SO叫做圆锥的轴,圆锥的轴通过底面圆的圆心,并且垂直于底面。另外,连结圆锥的顶点和底面圆上任意一点的线段SA、SA1、SA2、……都叫做圆锥的母线,显然,圆锥的母线长都相等。 母线定义:连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线。P122 6. 圆锥的性质 由图可得 (1)圆锥的高所在的直线是圆锥的轴,它垂直于底面,经过底面的圆心; (2)圆锥的母线长都相等 7. 圆锥的侧面展开图与侧面积计算 圆锥的侧面展开图是一个扇形,这个扇形的半径是圆锥侧面的母线、圆心是圆锥的顶点、弧长是圆锥底面圆的周长。 圆锥侧面积是扇形面积。 如果设扇形的半径为l,弧长为c,圆心角为n(如图),则它们之间有如下关系: 同时,如果设圆锥底面半径为r,周长为c,侧面母线长为l,那么它的侧面积是: 圆锥的全面积为: 例:在⊙中,120°的圆心角所对的弧长为,那么⊙O的半径为___________cm。 答案:120 解:由弧长公式:得: 例:若扇形的圆心角为120°,弧长为,则扇形半径为_____________,扇形面积为____________________。 答案:15;25π 例:如果一个扇形的面积和一个圆面积相等,且扇形的半径为圆半径的2倍,这个扇形的中心角为____________。 答案:90° 例:已知扇形的周长为28cm,面积为49cm2,则它的半径为____________cm。 答案:7 例:两个同心圆被两条半径截得的,,又AC=12,求阴影部分面积。 解:设OC=r,则OA=r+12,∠O=n° ∴OC=18,OA=OC+AC=30 例:如图,已知正方形的边长为a,求以各边为直径的半圆所围成的叶形的总面积。 解:∵正方形边长为a ∴, ∴叶的总面积为 *也可看作四个半圆面积减去正方形面积 例:已知AB、CD为⊙O的两条弦,如果AB=8,CD=6,的度数与的度数的和为180°,那么圆中的阴影部分的总面积为? 解:将弓形CD旋转至B,使D、B重合 如图,C点处于E点 的度数为180° ∴AE是⊙O的直径 ∴∠ABE=90° 又∵AB=8,BE=CD=6 由勾股定理 ∴半径 例:在△AOB中,∠O=90°,OA=OB=4cm,以O为圆心,OA为半径画,以AB为直径作半圆,求阴影部分的面积。 解:∵OA=4cm,∠O=90° ∴ , 则阴影部分的面积为: 例:①、②……是边长均大于2的三角形,四边形、……、凸n边形,分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧,4条弧,…… (1)图①中3条弧的弧长的和为_________________ 图②中4条弧的弧长的和为_________________ (2)求图中n条弧的弧长的和(用n表示) 解:(1)π,2π (2)解法1: ∵n边形内角和为:(n-2)180° 前n条弧的弧长的和为:个以某定点为圆心,以1为半径的圆周长 ∴n条弧的弧长的和为: 解法2:设各个扇形的圆心角依次为 则 ∴n条弧长的和为: 例:如图,在Rt△ABC中,已知∠BCA=90°,∠BAC=30°,AC=6m,把△ABC以点B为中心逆时针旋转,使点C旋转到AB边的延长线上的点C'处,那么AC边扫过的图形(阴影部分)的面积为? 分析:在Rt△ACB中,∠C=90°,∠BAC=30°,AB=6 法一: 法二:以B为圆心,BC为半径画弧 交A'B于D,AB于D' 有, 例:如图,已知Rt△ABC的斜边AB=13cm,一条直角边AC=5cm,以直线AC为轴旋转一周得一个圆锥。求这个圆锥的表面积。如果以直线AB为轴旋转一周,能得到一个什么样的图形? 解: 以直线AC为轴旋转一周所得的圆锥如图所示,它的表面积为: 以直线AB为轴旋转一周,所得到的图形如图所示。 例:一个圆锥的模型,这个模型的侧面是用一个半径为9cm,圆心角为240°的扇形铁皮制作,再用一块圆形铁皮做底,则这块图形铁皮的半径为______________。 答案:6 例:若圆锥的轴截面是一个边长为2cm的等边三角形,则这个圆锥的侧面积是_______。 答案:2π 例:已知圆锥的底面半径为40cm,母线长为90cm,则它的侧面展开图的圆心角为______。 答案:160° 例:若圆锥的侧面积是底面积的2倍,则侧面展开图的圆心角是__________。 答案:180° 例:如图,圆锥形的烟囱帽的底面直径是80cm,母线长50cm。 (1)画出它的展开图; (2)计算这个展开图的圆心角及面积。 解:(1)烟囱帽的展开图是扇形,这个扇形的半径是圆锥的母线长,弧长是圆锥底面周长(如图) (2)设扇形的半径为l,弧长为c,圆心角为α,则l=50cm, =288(度) 例:一个圆锥的高是10cm,侧面展开图是半圆,求圆锥的侧面积。 解:设圆锥底面半径为r,圆锥母线长为l,扇形弧长(即半圆)为c,则由题意得 即 在Rt△SOA中, 由此求得 故所求圆锥的侧面积为 例:蒙古包可以近似地看作圆锥和圆柱组成,如果想用毛毡搭建20个底面积为,高为3.5m,外围高4m的蒙古包,至少要多少平方米的毛毡? 解: ∵h1=4,∴ 答:至少要平方米的毛毡。 【模拟试题】 [基础演练] 1. 已知扇形的弧长为6πcm,圆心角为60°,则扇形的面积为____________。 2. 已知弓形的弧所对的圆心角为60°,弓形弦长为a,则这个弓形的面积是__________。 3. 如图,在平行四边形ABCD中,,,BD⊥AD,以BD为直径的⊙O交AB于E,交CD于F,则图中阴影部分的面积为___________。 4. 如图,AB是⊙O1的直径,AO1是⊙O2的直径,弦MN//AB,且MN与⊙O2相切于C点,若⊙O1的半径为2,则O1B、、CN、所围成的阴影部分的面积是_____________。 5. 如图,△ABC为某一住宅区的平面示意图,其周长为800m,为了美化环境,计划在住宅区周围5m内,(虚线以内,△ABC之外)作绿化带,则此绿化带的面积为___________。 6. 如图,两个同心圆被两条半径截得的,,⊙O'与,都相切,则图中阴影部分的面积为____________。 [综合测试] 7. 如图,OA是⊙O的半径,AB是以OA为直径的⊙O’的弦,O’B的延长线交⊙O于点C,且OA=4,∠OAB=45°,则由,和线段BC所围成的图形面积是______。 8. 如图,一扇形纸扇完全打开后,外侧两竹条AB,AC的夹角为120°,AB长为30cm,贴纸部分BD长为20cm,贴纸部分的面积为( ) A. B. C. D. 9. 如图,在同心圆中,两圆半径分别为2、4,∠AOB=120°,则阴影部分的面积为( ) A. B. C. D. 10. 一块等边三角形的木板,边长为1,现将木板沿水平翻滚(如图),那么,B点从开始至结束所走过的路径长度为( ) A. B. C. 4 D. 11. (2004·湖北黄冈)如图,要在直径为50cm的圆形木板上截出四个大小相同的圆形凳面,问怎样才能截出直径最大的凳面,最大直径是多少厘米? [探究升级] 12. (2004·新疆)在相距40km的两个城镇A、B之间,有一个近似圆形的湖泊,其半径为10km,圆心恰好位于A、B连线的中点处,现要绕过湖泊从A城到B城,假设除湖泊外,所有的地方均可行走,有如图所示两种行走路线,请你通过推理计算,说明哪条路线较短。 (1)的路线:线段线段DB (2)的路线:线段线段FB(其中E、F为切点) [参考答案] 1. 2. 3. 4. 5. 6. 7. 8. A 9. B 10. B 11. 截法如图所示 根据圆的对称性可知: O1,O3都在⊙O的直径AB上,设所截出的凳面的直径为r 则O1O2=r,O2O3=r, 又 12. 由题意可知图答(1)路径: 图答(2)路径:如图连接OE、OF,连结CD 由题意可知A、C、D、B共线,且经过O点 ∵E为切点,∴OE⊥AE 在Rt△OAE中,AO=2EO ∴∠A=30°,∠AOE=60° 同理∠BOF=60° 同理 由计算可知图(2)路线较短。 14- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 扇形 面积 讲义
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文