平行线复习导学案.doc
《平行线复习导学案.doc》由会员分享,可在线阅读,更多相关《平行线复习导学案.doc(4页珍藏版)》请在咨信网上搜索。
平行线复习导学案 学习目标1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化, 梳理本章的知识结构. 2.通过对知识的疏理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形. 3.使学生认识平面内两条直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和反映平行线的性质,理解平移的性质。 学习重、难点: 复习正面内两条直线的相交和平行的位置关系,以及相交平行的综合应用.,垂直、平行的性质和判定的综合应 学练过程: 一、自主学习: 一、本章的知识结构:自己总结 二 、课堂助学: 练习一 1. 如图1,直线AB、CD、EF相交于O,∠AOE的对顶角 是 ,邻补角是 ,∠COF的对顶角是 , 邻补角是 。 2.如图2,∠BDE的同位角是 ,内错角是 ,同旁内角是 ;∠ADE与∠DGC是直线 被 所截 成的 角。 3. 如图3,三条直线a、b、c交于一点O,∠1=45°, ∠2=60°,∠3= 。 4. 如图4,∠1=105°,∠2=95°,∠3=105°, ∠4= 。 5. 当两条直线相交所成的四个角中有一个角是直角时,就说这两条直线 ,它们的交点叫做 。 6. 直线外一点到直线上各点连结的所有线段中,垂线 段 ,这条垂线段的长度叫做 。 7.经过直线外一点,有且只有 条直线与这条直线 平行;过一点有且只有 条直线与已知直线垂直。 8. 如果两条直线都和第三条直线平行,那么这两条直 线 。 9.两条直线被第三条直线所截,如果同位角相等或 相等, 相等, 互补,那么这两条直线平行。 10.两条平行直线被第三条直线所截,则 相等, 相等, 互补。 练习二、已知三角形ABC,(1)过A点画BC边上的垂线;(2)过C点画AB边上的垂线。 三、 合作探究 例1.已知:如图5,AB∥CD,求证:∠B+∠D=∠BED。 分析:可以考虑把∠BED变成两个角的和。如图5,过E点引一条直线EF∥AB,则有∠B=∠1,再设法证明∠D=∠2,需证 EF∥CD,这可通过已知AB∥CD和EF∥AB得到。 证明:过点E作EF∥AB,则∠B=∠1(两直线平行,内错角相等)。 ∵AB∥CD(已知), 又∵EF∥AB(已作), ∴EF∥CD(平行于同一直线的两条直线互相平行)。 ∴∠D=∠2(两直线平行,内错角相等)。 又∵∠BED=∠1+∠2, ∴∠BED=∠B+∠D(等量代换)。 变式1。已知:如图6,AB∥CD,求证:∠BED=360°-(∠B+∠D)。 分析:此题与例1的区别在于E点的位置及结论。我们通常所说的∠BED都是指小于平角的角,如果把∠BED看成是大于平角的角,可以认为此题的结论与例1的结论是一致的。因此,我们模仿例1作辅助线,不难解决此题。 证明:过点E作EF∥AB,则∠B+∠1=180°(两直线平行,同旁内角互补)。 ∵AB∥CD(已知), 又∵EF∥AB(已作), ∴EF∥CD(平行于同一直线的两条直线互相平行)。 ∴∠D+∠2=180°(两直线平行,同旁内角互补)。 ∴∠B+∠1+∠D+∠2=180°+180°(等式的性质)。 又∵∠BED=∠1+∠2, ∴∠B+∠D+∠BED=360°(等量代换)。 ∴∠BED==360°-(∠B+∠D)(等式的性质)。 变式2。已知:如图7,AB∥CD,求证:∠BED=∠D-∠B。 分析:此题与例1的区别在于E点的位置不同,从而结论也不同。模仿例1与变式1作辅助线的方法,可以解决此题。 证明:过点E作EF∥AB,则∠FEB=∠B(两直线平行,内错角相等)。 ∵AB∥CD(已知), 又∵EF∥AB(已作), ∴EF∥CD(平行于同一直线的两条直线互相平行)。 ∴∠FED=∠D(两直线平行,内错角相等)。 ∵∠BED=∠FED-∠FEB, ∴∠BED=∠D-∠B(等量代换)。 变式3。已知:如图8,AB∥CD,求证:∠BED=∠B-∠D。 分析:此题与变式2类似,只是∠B、∠D的大小发生了变化。 证明:过点E作EF∥AB,则∠1+∠B=180°(两直线平行,同旁内角互补)。 ∵AB∥CD(已知), 又∵EF∥AB(已作), ∴EF∥CD(平行于同一直线的两条直线互相平行)。 ∴∠FED+∠D=180°(两直线平行,同旁内角互补)。 ∴∠1+∠2+∠D=180°。 ∴∠1+∠2+∠D-(∠1+∠B)=180°-180°(等式的性质)。 ∴∠2=∠B-∠D(等式的性质)。 即∠BED=∠B-∠D。 例2.已知:如图9,AB∥CD,∠ABF=∠DCE。求证:∠BFE=∠FEC。 证法一:过F点作FG∥AB ,则∠ABF=∠1(两直线平行,内错角相等)。 过E点作EH∥CD ,则∠DCE=∠4(两直线平行,内错角相等)。 ∵FG∥AB(已作),AB∥CD(已知), ∴FG∥CD(平行于同一直线的两条直线互相平行)。 又∵EH∥CD (已知), ∴FG∥EH(平行于同一直线的两条直线互相平行)。 ∴∠2=∠3(两直线平行,内错角相等)。 ∴∠1+∠2=∠3+∠4(等式的性质) 即∠BFE=∠FEC。 证法二:如图10,延长BF、DC相交于G点。 ∵AB∥CD(已知), ∴∠1=∠ABF(两直线平行,内错角相等)。 又∵∠ABF=∠DCE(已知), ∴∠1=∠DCE(等量代换)。 ∴BG∥EC(同位角相等,两直线平行)。 ∴∠BFE=∠FEC(两直线平行,内错角相等)。 如果延长CE、AB相交于H点(如图11),也可用同样的方法证明(过程略)。 证法三:(如图12)连结BC。 ∵AB∥CD(已知), ∴∠ABC=∠BCD(两直线平行,内错角相等)。 又∵∠ABF=∠DCE(已知), ∴∠ABC-∠ABF =∠BCD-∠DCE(等式的性质)。 即∠FBC=∠BCE。 ∴BF∥EC(内错角相等,两直线平行)。 ∴∠BFE=∠FEC(两直线平行,内错角相等)。 四、 课堂总结 1.解题之后要进行反思——改变命题的条件,或将命题的条件和结论互换,或将图形进行变化,会有什么结果?这样可以培养发散思维能力,提高应变能力。 2.平时解题时要从多个角度去考虑解题方法,通过比较选择最优解法,可以开阔思维,提高分析问题、解决问题的能力。 五、作业: 1. 如图13,已知OA⊥OC,OB⊥OD,∠3=26°,求∠1、∠2的度数。 2. 如图14,已知AB∥ED,∠CAB=135°∠ACD=80°,求∠CDE的度数。 3. 已知:如图15,AD⊥BC于D,EG⊥BC于G,∠E =∠3。求证:AD平分∠BAC。 学后反思:- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平行线 复习 导学案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文