公式法解一元二次方程三案设计.doc
《公式法解一元二次方程三案设计.doc》由会员分享,可在线阅读,更多相关《公式法解一元二次方程三案设计.doc(4页珍藏版)》请在咨信网上搜索。
公式法解一元二次方程三案设计 年级 : 九年级 学科:数学 课题: 公式法解一元二次方程 课型: 新授课 备课时间:9月18日 主备人: 审核人: 学习目标: (1)会用公式法解一元二次方程; (2)经历求根公式的发现和探究过程,提高学生观察能力、分析能力以及逻辑思维能力; (3)渗透化归思想,领悟配方法,感受数学的内在美. 教学重点 知识层面:公式的推导和用公式法解一元二次方程; 能力层面:以求根公式的发现和探究为载体,渗透化归的数学思想方法. 教学难点:求根公式的推导. 教学流程 导航台 知识链接 自主探究环节 一、用配方法解下列一元二次方程: (1)x2+4x+2=0; (2)3x2-6x+1=0 二、学生自学课本P34—37,解决下列问题: 1、用配方法解ax2+bx+c=0(a≠0), 得出求根公式。 2、掌握用求根公式就一元二次方程的一般步骤 3、完成书上练习题 以小测试的方式进行,3分钟 学生自学7分钟 小组讨论3分钟 复习巩固旧知识,为本节课的学习打下更好的基础; 合作交流环节 1、让两个学生在黑板上板演用配方法解ax2+bx+c=0(a≠0)的过程,并让一名学生讲解过程另一名补充。 2、学生板演 用公式法解方程 (1)2x2-x-1=0; (2)4x2-3x+2=0 ; (3)x2+15x=-3x; (4)x2-x+=0. 两名学生板演,一名学生边板演边讲解,另一名学生补充 进一步阐述求根公式,归纳总结用公式法解一元二次方程的一般步骤. 按照配方法的四个步骤来进行讲解 展示点拨环节 1、求根公式的推导过程补充:当b2-4ac≥0时, x+= x=- 即x= x1= , x2= 当b2-4ac<0时, 方程无实数根. 2、 重要知识点强调: (1) 式子b2-4ac叫做方程ax2+bx+c=0(a≠0)的判别式。 当b2-4ac≥0,方程有两个实数根。 当b2-4ac<0时,方程无实数根。 (2) 公式法解一元二次方程的一般步骤: a、化为一般形式 b、确定a、b、c C、计算b2-4ac d、利用求根公式解方程 推导求根公式的过程,根据b2-4ac的符号根有三种情况学生只讲出一种,师需要补充讲解 学生记忆知识点 巩固达标环节 1、用公式法解一元二次方程: (1) x2+x-6=0; (2)x2-x-=0; (3)3x2-6x-2=0; (4)4x2-6x=0; (5)x2+4x+8=4x+11; (6)x(2x-4)=5-8x. 2、要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以小)的高度比,等于下部与全部的高度比,雕像的下部应设计为多高? 在前面的基础上进一步提问: (结合学生的实际情况,可以放在课后思考.) (1)如果雕像的高度设计为3m,那雕像的下部应是多少?4m呢? (2)进而把问题一般化,这个高度比是多少? 之后简单介绍黄金分割数,使学生感受到数学的奥妙. 3、 关于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 清清说:“此方程有两个不相等的实数根”,而楚楚反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由. 6人板演其余人在练习本上做 要求学生列成一元二次方程,不要列成分式方程 基于学生基础较好,因此对求根公式作进一步深化,并综合运用了配方法,使不同层次的学生都有不同提高. 能够熟练运用公式法解一元二次方程,让每位学生都有所收获. ①运用所学的知识解决实际问题;②能力层面上的拓展----化归思想.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 公式 一元 二次方程 设计
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文