单元评估检测(九).doc
《单元评估检测(九).doc》由会员分享,可在线阅读,更多相关《单元评估检测(九).doc(13页珍藏版)》请在咨信网上搜索。
圆学子梦想 铸金字品牌 温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。 单元评估检测(九) 第九章 (120分钟 160分) 一、填空题(本大题共14小题,每小题5分,共70分.把答案填在题中横线上) 1.某中学高三年级从甲、乙两个班级各选出8名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的平均分是86,乙班学生成绩的中位数是83,则x+y的值为 . 【解析】由平均数的定义求得x=8,由中位数的定义求得y=5,所以x+y=13. 答案:13 2.已知样本容量为30,在样本频率分布直方图(如图)中,各小长方形的高的比从左到右依次为2∶4∶3∶1,则第2组的频率和频数分别为 . 【解析】因为小长方形的高的比等于面积之比, 所以从左到右各组的频率之比为2∶4∶3∶1, 因为各组频率之和为1,所以第二组的频率为1×=0.4,因为样本容量为30, 所以第二组的频数为30×=12. 答案:0.4,12 3.(2015·泰州模拟)某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是 . 【解析】一班被抽取的人数是16×=9;二班被抽取的人数是16×=7. 答案:9,7 4.如图是一容量为100的样本的质量的频率分布直方图,则由图可估计样本质量的中位数为 . 【解析】第一块的面积为0.06×5=0.3,第二块的面积为0.5,所以第三块的面积为0.2,根据中位数左右两侧的面积相等,也就是概率相等,所以中位数为12. 答案:12 5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 . 【解析】记3个兴趣小组分别为1,2,3,甲参加兴趣小组1,2,3分别记为“甲1”、“甲2”、“甲3”,乙参加兴趣小组1,2,3分别记为“乙1”、“乙2”、“乙3”,则基本事件为“(甲1,乙1);(甲1,乙2);(甲1,乙3);(甲2,乙1);(甲2,乙2);(甲2,乙3);(甲3,乙1);(甲3,乙2);(甲3,乙3)”,共9个,记事件A为“甲、乙两位同学参加同一个兴趣小组”,其中事件A有“(甲1,乙1);(甲2,乙2);(甲3,乙3)”,共3个.因此P(A)==. 答案: 6.(2015·郑州模拟)已知函数f(x)=ax2-bx-1,其中a∈(0,2],b∈(0,2],在其取值范围内任取实数a,b,则函数f(x)在区间[1,+∞)上为增函数的概率为 . 【解析】由f′(x)=2ax-b>0得x>,从而≤1,即b≤2a.因为点集(a,b)在区域a∈(0,2],b∈(0,2]中,故可行区域的面积为S=4,而满足条件b≤2a的区域面积为S′=4-×2×1=3,从而所求概率为P=. 答案: 7.(2015·湛江模拟)在线段AB上任取一点P,以P为顶点,B为焦点作抛物线,则该抛物线的准线与线段AB有交点的概率是 . 【解析】由题意,要使该抛物线的准线与线段AB有交点,则需使点P在线段AB的中点与B之间,故由几何概型得,所求概率为P=. 答案: 8.(2015·无锡模拟)我校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法,抽取4个班进行调查,若抽到编号之和为48,则抽到的最小编号为 . 【解析】系统抽样的抽取间隔为=6, 设抽到的最小编号为x,则x+(6+x)+(12+x)+(18+x)=48,所以x=3. 答案:3 9.某教研机构随机抽取某校20个班级,调查各班关注汉字听写大赛的学生人数,根据所得数据的茎叶图,以组距为5将数据分组成[0,5),[5,10),[10,15),[15,20),[20,25),[25,30),[30,35),[35,40]时,所作的频率分布直方图如图所示,则原始茎叶图可能是下列中的 . 【解析】由频率分布直方图可知: [0,5)的频数为20×0.01×5=1个, [5,10)的频数为20×0.01×5=1个, [10,15)的频数为20×0.04×5=4个, [15,20)的频数为20×0.02×5=2个, [20,25)的频数为20×0.04×5=4个, [25,30)的频数为20×0.03×5=3个, [30,35)的频数为20×0.03×5=3个, [35,40]的频数为20×0.02×5=2个, 则对应的茎叶图为①. 答案:① 10.已知Ω={(x,y)|x+y≤6,x≥0,y≥0},A={(x,y)|x≤4,y≥0,x-2y≥0},若向区域Ω上随机投一点P,则点P落入区域A的概率为 . 【解析】因为区域Ω内的点所围的面积是18个单位,而集合A中的点所围成的面积S△OCD=4. 所以向区域Ω上随机投一点P, 则点P落入区域A的概率为. 答案: 11.(2015·徐州模拟)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为 . 【解析】设样本中男生人数为n,则有=,解得n=160. 答案:160 12.某中学举行了一次田径运动会,其中有50名学生参加了一次百米比赛,他们的成绩和频率如图所示.若将成绩小于15秒作为奖励的条件,则在这次百米比赛中获奖的人数共有 人. 【解析】由频率分布图知,成绩在[14,15)内的频率为:0.16, 成绩在[13,14)内的频率为:0.06, 所以,成绩在[13,15)内的人数为: 50×0.16+50×0.06=11(人), 则在这次百米比赛中获奖的人数共有11人. 答案:11 13.(2015·杭州模拟)用茎叶图记录甲、乙两人在5次体能综合测评中的成绩(成绩为两位整数),若乙有一次不少于90分的成绩未记录,则甲的平均成绩超过乙的平均成绩的概率为 . 【解析】由茎叶图可得,甲的5次综合测评成绩分别为88,89,90,91,92,则甲的平均成绩为:(88+89+90+91+92)=90. 设未记录数字的个位为x,则乙的5次综合测评成绩分别为83,83,87,99,90+x.则乙的平均成绩为:(83+83+87+99+90+x)=88.4+. 当x=9时,甲的平均数<乙的平均数,即乙的平均成绩超过甲的平均成绩的概率为, 当x=8时,甲的平均数=乙的平均数,即乙的平均成绩不小于甲的平均成绩的概率为, 所以甲的平均成绩超过乙的平均成绩的概率为1--=. 答案: 14.在区间[-5,5]内随机地取出一个数a,使得1∈{x|2x2+ax-a2>0}的概率为 . 【解析】由1∈{x|2x2+ax-a2>0},得a2-a-2<0, 解得-1<a<2,所以所求概率为. 答案: 二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(14分)某市为增强市民的环保意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示. (1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参与广场的宣传活动,应从第3,4,5组各抽取多少名志愿者? (2)在(1)的条件下,决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率. 【解析】(1)第3组的人数为0.3×100=30,第4组的人数为0.2×100=20,第5组的人数为0.1×100=10. 因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:×6=3;第4组:×6=2;第5组:×6=1. 所以应从第3,4,5组中分别抽取3人,2人,1人. (2)记第3组的3名志愿者为A1,A2,A3,第4组的2名志愿者为B1,B2,第5组的1名志愿者为C.则从6名志愿者中抽取2名志愿者有:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C),(A2,A3),(A2,B1),(A2,B2),(A2,C),(A3,B1),(A3,B2),(A3,C),(B1,B2),(B1,C),(B2,C),共有15种. 其中第4组的2名志愿者B1,B2至少有一名志愿者被抽中的有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),(B1,C),(B2,C),共有9种, 所以第4组至少有一名志愿者被抽中的概率为=. 16.(14分)(2015·沈阳模拟)某中学甲、乙两班共有25名学生报名参加了一项测试.如图是这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同. (1)求这两个班学生成绩的中位数及x的值. (2)如果将这些成绩分为“优秀”(得分在175分以上,包括175分)和“过关”,若学校再从这两个班获得“优秀”成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率. 【解析】(1)甲班学生成绩的中位数为(154+160)=157,乙班学生成绩的中位数正好是150+x=157,故x=7. (2)用A表示事件“甲班至多有1人入选”.设甲班两位优生为A,B,乙班三位优生为1,2,3.则从5人中选出3人的所有方法种数为:(A,B,1),(A,B,2),(A,B,3),(A,1,2),(A,1,3),(A,2,3),(B,1,2),(B,1,3),(B,2,3),(1,2,3)共10种情况,其中至多1名甲班同学的情况共(A,1,2),(A,1,3),(A,2,3),(B,1,2),(B,1,3),(B,2,3),(1,2,3)7种, 由古典概型概率计算公式可得P(A)=. 17.(14分)(2015·九江模拟)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2. (1)从以上五张卡片中任取两张,求这两张卡片中至少有一张蓝色卡片的概率. (2)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率. 【解析】(1)从五张卡片中任取两张卡片的所有可能情况有如下10种:(红1,红2),(红1,红3),(红1,蓝1),(红1,蓝2),(红2,红3),(红2,蓝1), (红2,蓝2),(红3,蓝1),(红3,蓝2),(蓝1,蓝2),其中两张卡片中至少有一张蓝色有7种情况,故所求的概率为P1=. (2)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:(红1,绿0),(红2,绿0),(红3,绿0),(蓝1,绿0),(蓝2,绿0),即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为P2=. 18.(16分)有编号为A1,A2,…,A10的10个零件,测量其直径(单位:cm),得到下面数据: 编号 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 直径 1.51 1.49 1.49 1.51 1.49 1.51 1.47 1.46 1.53 1.47 其中直径在区间[1.48,1.52]内的零件为一等品. (1)从上述10个零件中,随机抽取1个,求这个零件为一等品的概率. (2)从一等品零件中,随机抽取2个. ①用零件的编号列出所有可能的抽取结果; ②求这2个零件直径相等的概率. 【解析】(1)由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取1个为一等品”为事件A,则P(A)==. (2)①一等品零件的编号为A1,A2,A3,A4,A5,A6.从这6个一等品零件中随机抽取2个,所有可能的结果有:(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),(A3,A5),(A3,A6),(A4,A5),(A4,A6),(A5,A6),共有15种. ②“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:(A1,A4),(A1,A6),(A4,A6),(A2,A3),(A2,A5),(A3,A5),共有6种,所以P(B)==. 19.(16分)(2015·珠海模拟)为了解甲、乙两个班级某次考试的数学成绩,从甲、乙两个班级中分别随机抽取5名学生的成绩(单位:分)作样本,如图是样本的茎叶图: (1)分别计算甲、乙两个班级数学成绩的样本平均数. (2)从甲、乙两个班级数学成绩的样本中各随机抽取1名同学的数学成绩,求抽到的成绩之差的绝对值不低于20的概率. 【解析】(1)甲班数学成绩的样本平均数为: =(91+102+114+122+123)=110.4. 乙班数学成绩的样本平均数为: =(94+103+112+113+125)=109.4. (2)根据题意,从甲、乙两个班级数学成绩的样本中各随机抽取1名同学的数学成绩分别设为x和y,构成一对有序数组(x,y),则基本事件的总数为25, 设事件A:抽到的成绩之差的绝对值不低于20, 则事件A包含的基本事件为(91,112)(91,113)(91,125)(102,125)(114,94)(122,94)(123,94)(123,103),共有8个. P(A)=. 从甲、乙两个班级数学成绩的样本中各随机抽取1名同学的数学成绩,抽到的成绩之差的绝对值不低于20的概率为. 20.(16分)(2015·长春模拟)某校高三年级有男学生105人,女学生126人,教师42人,用分层抽样的方法从中抽取13人进行问卷调查,设其中某项问题的选择,分别为“同意”、“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息. 同意 不同意 总计 教师 1 女学生 4 男学生 2 (1)完成此统计表. (2)估计高三年级学生“同意”的人数. (3)从被调查的女学生中选取2人进行访谈,求选到两名学生中恰有一人“同意”,一人“不同意”的概率. 【解析】(1) 同意 不同意 总计 教师 1 1 2 女学生 2 4 6 男学生 3 2 5 (2)×126+×105=105(人). (3)设“同意”的两名学生编号为1,2,“不同意”的四名学生编号为3,4,5,6,选出两人共有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15种结果, 其中(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)共8种结果满足题意.每个结果出现的可能性相等,所以恰好有1人“同意”,一人“不同意”的概率为. 关闭Word文档返回原板块 - 13 -- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 单元 评估 检测
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文