矩形的性质与判定.doc
《矩形的性质与判定.doc》由会员分享,可在线阅读,更多相关《矩形的性质与判定.doc(2页珍藏版)》请在咨信网上搜索。
§1.2 矩形的性质与判定 第一课时 教学目标 (一)教学知识点 1.掌握矩形有关概念和性质。 2.掌握矩形的性质定理 “矩形的四个角都是直角”“矩形的对角线相等” “直角三角形斜边上的中线等于斜边的一半”。 3.探索矩形的对称性 (二)能力训练要求 1.动手操作实践的过程中,探索发现矩形的性质。 2.通过探索矩形的性质,培养学生简单的推理能力和逻辑思维能力。 (三) 情感与价值观要求 1.在探索矩形性质的过程中,感受几何图形中呈现的数学美。 2.在进行探索的活动过程中发展学生的探究意识和合作交流的习惯。 教学重点 探索矩形的性质。 教学难点 矩形性质定理的灵活应用。 教学方法: 探索归纳法 教具准备: 三角板 教学过程: 一、观赏生活中的图片,引入课题 教材第11页:下面图片中都含有一些特殊的平行四边形,观察这些特殊的平行四边形,你能发现它们有什么样的共同特征?(设计这个活动,一方面可让学生认识到矩形在生活、生产中的应用,另一方面让学生在复杂的图形中认识矩形。) 二、开启智慧 1. 矩形的定义:有一个角是直角的平行四边形叫矩形. 矩形是生活中常见的图形,你能举出一些生活中矩形的例子吗?与同伴交流。 2.想一想 (1)矩形是特殊的平行四边形,它具有一般平行四边形的所有性质,你能举出一些这样的性质吗? (2)矩形是轴对称图形吗?如果是,它有几条对称轴? (3)你认为矩形还具有哪些特殊的性质?与同伴交流。 通过观察,可以发现矩形的四个角都是直角,矩形的对角线相等. 已知:如图,四边形ABCD是矩形,∠ABC=90°,对角线AC、BD相交于点O。 求证:(1)∠ABC=∠BCD=∠CDA=∠DAB=90° (2)AC= DB 定理:矩形的四个角都是直角。 定理:矩形的对角线相等. 可以得出矩形是轴对称图形,可以从折叠来说明轴对称性。矩形还具有平行四边形的所有共性,比如:矩形是中心对称图形,对称中心为两条对角线的交点。 3.议一议 如图,矩形的对角线AC与BD的交点为E,那么BE是Rt△ABC中一条怎样的特殊线段?它与AC有什么大小关系?为什么? 因为四边形ABCD是矩形,所以四边形ABCD也是平行四边形.因此,对角线AC与BD互相平分.即AE=EC,BE=DE.又因为四边形ABCD是矩形,所以AC=BD,因此BE=BD= AC.故BE是Rt△ABC的斜边AC上的中线,它与AC的大小关系为BE= AC. 定理:直角三角形斜边上的中线等于斜边的一半。 三、范例学习: 例1:如图,矩形ABCD的两条对角线相交于点O,已知∠AOD=120°,AB=2.5.求矩形对角线的长. 分析:欲求对角线的长,由于∠BAD=90°或∠ABC=90°,AB=2.5,则只要再找出Rt△ABD中一条直角边或一个锐角的度数,再从已知条件∠AOD=120°出发,应用矩形的性质可知∠ADB=30°,这样即可求出对角线的长. 四、随堂练习 教材随堂练习 五、新课小结: 通过本节课的学习,你有什么收获? 六、作业设计: 习题1.4第1、2题。 教学反思- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 矩形 性质 判定
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文