指数与指数函数-试卷(含解析).doc
《指数与指数函数-试卷(含解析).doc》由会员分享,可在线阅读,更多相关《指数与指数函数-试卷(含解析).doc(6页珍藏版)》请在咨信网上搜索。
指数与指数函数 一、选择题 1.函数y=a|x|(a>1)的图像是( ) 解析 y=a|x|=当x≥0时,与指数函数y=ax(a>1)的图像相同;当x<0时,y=a-x与y=ax的图像关于y轴对称,由此判断B正确. 答案 B 2.已知函数f(x)=,则f(9)+f(0)=( ) A.0 B.1 C.2 D.3 解析 f(9)=log39=2,f(0)=20=1, ∴f(9)+f(0)=3. 答案 D 3.不论a为何值时,函数y=(a-1)2x-恒过定点,则这个定点的坐标是 ( ). A. B. C. D. 解析 y=(a-1)2x-=a-2x,令2x-=0,得x=-1,则函数y=(a-1)2x-恒过定点. 答案 C 4.定义运算:a*b=如1*2=1,则函数f(x)=2x *2-x的值域为 ( ). A.R B.(0,+∞) C.(0,1] D.[1,+∞) 解析 f(x)=2x*2-x=∴f(x)在(-∞,0]上是增函数,在(0,+∞)上是减函数,∴0<f(x)≤1. 答案 C 5.若a>1,b>0,且ab+a-b=2,则ab-a-b的值为( ) A. B.2或-2 C.-2 D.2 解析 (ab+a-b)2=8⇒a2b+a-2b=6, ∴(ab-a-b)2=a2b+a-2b-2=4. 又ab>a-b(a>1,b>0),∴ab-a-b=2. 答案 D 6.若函数f(x)=(k-1)ax-a-x(a>0且a≠1)在R上既是奇函数,又是减函数,则g(x)=loga(x+k)的图象是下图中的 ( ). 解析 函数f(x)=(k-1)ax-a-x为奇函数,则f(0)=0,即(k-1)a0-a0=0,解得k=2,所以f(x)=ax-a-x,又f(x)=ax-a-x为减函数,故0<a<1,所以g(x)=loga(x+2)为减函数且过点(-1,0). 答案 A 二、填空题 7.已知函数f(x)= 满足对任意x1≠x2,都有<0成立,则a的取值范围是________. 解析 对任意x1≠x2,都有<0成立,说明函数y=f(x)在R上是减函数,则0<a<1,且(a-3)×0+4a≤a0,解得0<a≤. 答案 8.若函数y=2-x+1+m的图象不经过第一象限,则m的取值范围是________. 解析 函数y=2-x+1+m=()x-1+m, ∵函数的图象不经过第一象限, ∴()0-1+m≤0,即m≤-2. 答案 (-∞,-2] 9.若函数f(x)=ax-x-a(a>0,且a≠1)有两个零点,则实数a的取值范围是________. 解析 令ax-x-a=0即ax=x+a, 若0<a<1,显然y=ax与y=x+a的图象只有一个公共点; 若a>1,y=ax与y=x+a的图象如图所示. 答案 (1,+∞) 10.已知f(x)=x2,g(x)=x-m,若对∀x1∈[-1,3],∃x2∈[0,2],f(x1)≥g(x2),则实数m的取值范围是________. 解析 x1∈[-1,3]时,f(x1)∈[0,9],x2∈[0,2]时,g(x2)∈,即g(x2)∈,要使∀x1∈[-1,3],∃x2∈[0,2],f(x1)≥g(x2),只需f(x)min≥g(x)min,即0≥-m,故m≥. 答案 三、解答题 11.已知函数f(x)=. (1)判断函数f(x)的奇偶性; (2)求证f(x)在R上为增函数. (1)解 因为函数f(x)的定义域为R,且f(x)==1-,所以f(-x)+f(x)=+=2-=2-=2-=2-2=0,即f(-x)=-f(x),所以f(x)是奇函数. (2)证明 设x1,x2∈R,且x1<x2,有 f(x1)-f(x2)=-=, ∵x1<x2,2x1-2x2<0,2x1+1>0,2x2+1>0, ∴f(x1)<f(x2),∴函数f(x)在R上是增函数. 12.已知函数f(x)=b·ax(其中a,b为常量,且a>0,a≠1)的图象经过点A(1,6),B(3,24). (1)求f(x); (2)若不等式()x+()x-m≥0在x∈(-∞,1]时恒成立,求实数m的取值范围. 解析 (1)把A(1,6),B(3,24)代入f(x)=b·ax,得 结合a>0且a≠1,解得 ∴f(x)=3·2x. (2)要使()x+()x≥m在(-∞,1]上恒成立, 只需保证函数y=()x+()x在(-∞,1]上的最小值不小于m即可. ∵函数y=()x+()x在(-∞,1]上为减函数, ∴当x=1时,y=()x+()x有最小值. ∴只需m≤即可. ∴m的取值范围(-∞,] 13.已知函数f(x)=ax2-4x+3. (1)若a=-1,求f(x)的单调区间; (2)若f(x)有最大值3,求a的值. 解析 (1)当a=-1时,f(x)=-x2-4x+3, 令t=-x2-4x+3, 由于t(x)在(-∞,-2)上单调递增,在[-2,+∞)上单调递减, 而y=t在R上单调递减, 所以f(x)在(-∞,-2)上单调递减,在[-2,+∞)上单调递增, 即函数f(x)的递增区间是[-2,+∞),递减区间是(-∞,-2). (2)令h(x)=ax2-4x+3,f(x)=h(x), 由于f(x)有最大值3, 所以h(x)应有最小值-1, 因此必有解得a=1. 即当f(x)有最大值3时,a的值等于1. 14.已知定义在R上的函数f(x)=2x-. (1)若f(x)=,求x的值; (2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围. 解 (1)当x<0时, f(x)=0,无解; 当x≥0时,f(x)=2x-, 由2x-=,得2·22x-3·2x-2=0, 看成关于2x的一元二次方程,解得2x=2或-, ∵2x>0,∴x=1. (2)当t∈[1,2]时,2t+m≥0, 即m(22t-1)≥-(24t-1), ∵22t-1>0,∴m≥-(22t+1), ∵t∈[1,2],∴-(22t+1)∈[-17,-5], 故m的取值范围是[-5,+∞).- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 指数 指数函数 试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文