二次函数的最大面积问题.docx
《二次函数的最大面积问题.docx》由会员分享,可在线阅读,更多相关《二次函数的最大面积问题.docx(84页珍藏版)》请在咨信网上搜索。
初四数学二次函数中的最大面积专题练习题 1.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC.抛物线y=ax2+bx+c经过点A、B、C. (1)求抛物线的解析式. (2)若点P是第二象限内抛物线上的动点,其横坐标为t. ①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时点P的坐标. ②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD面积的最大值;若不存在,请说明理由.第24题备用图 x y C O D A B 2.如图,已知抛物线与x轴相交于A,B两点,并与直线交于B,C两点,其中点C是直线与y轴的交点,连接AC. (1)求抛物线的解析式; (2)证明:△ABC为直角三角形; (3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由. 3.某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题: (1)设AB=x米(x>0),试用含x的代数式表示BC的长; (2)请你判断谁的说法正确,为什么? 4.如图,已知抛物线过点A(6,0),B(-2,0),C(0,-3). (1)求此抛物线的解析式; (2)若点H是该抛物线第四象限的任意一点,求四边形OCHA的最大面积; (3)若点Q在轴上,点G为该抛物线的顶点,且∠QGA=45º,求点Q的坐标. 5.如图,抛物线y=-x2-2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点. (1)求A、B、C的坐标; (2)设点H是第二象限内抛物线上的一点,且△HAB的面积是6,求点H的坐标; (3)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积. 6.如图,△ABC中,∠C=90°,BC=7cm,AC=5,点P从B点出发,沿BC方向以2m/s的速度移动,点Q从C出发,沿CA方向以1m/s的速度移动. (1)若P、Q同时分别从B、C出发,那么几秒后,△PCQ的面积等于4? (2)若P、Q同时分别从B、C出发,那么几秒后,PQ的长度等于5? (3)△PCQ的面积何时最大,最大面积是多少? 7.如图,有长为24米的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度10米):如果AB的长为,面积为. (1)求面积与的函数关系(写出的取值范围); (2)取何值时,面积最大?面积最大是多少? 8.若用40m的篱笆围成一个一边靠墙的矩形场地,墙长a m,垂直于墙的边长为xm,围成的矩形场地的面积为y m2. (1)求y与x的函数关系式. (2)矩形场地的面积能否达到210m2?请说明理由. (3)当a=15m或30m时,请分别求出这个矩形场地面积的最大值. 9.如图,用长为l2 m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E.设CD=DE=xm,五边形ABCDE的面积为S m2.问当x取什么值时,S最大?并求出S的最大值. 10.已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB. (1)求抛物线的解析式; (2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值. 11.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点. (1)求这个二次函数的表达式; (2)当点P运动到什么位置时,△BPC的面积最大?求出此时P点的坐标和△BPC的最大面积; (3)连接PO、PC,并把△POC沿CO翻折,得到四边形POP1C,那么是否存在点P,使四边形POP1C为菱形?若存在,直接写出此时点P的坐标;若不存在,请说明理由. 12.课本中有一道作业题: 有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm? 小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题. (1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算. (2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长. 13.某家禽养殖场,用总长为110m的围栏靠墙(墙长为22m)围成如图所示的三块矩形区域,矩形AEHG与矩形CDEF面积都等于矩形BFHG面积的一半,设AD长为xm,矩形区域ABCD的面积为ym2. (1)求y与x之间的函数关系式,并写出自变量x的取值范围; (2)当x为何值时,y有最大值?最大值是多少? 14.有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.现要把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB,AC上. (1)如果此矩形可分割成两个并排放置的正方形,如图1,此时,这个矩形零件的两条邻边长分别为多少mm?请你计算. (2)如果题中所要加工的零件只是矩形,如图2,这样,此矩形零件的两条邻边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条邻边长. 15.如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC. (1)请直接写出二次函数y=ax2+x+c的表达式; (2)判断△ABC的形状,并说明理由; (3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标; (4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标. 16.如图,已知抛物线y=﹣x2+bx+c与坐标轴分别交于点点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动. (1)求该抛物线的解析式及点E的坐标; (2)若D点运动的时间为t,△CED的面积为S,求S关于t的函数关系式,并求出△CED的面积的最大值. 17.如图,在平面直角坐标系xoy中,直线与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是,且经过A、C两点,与x轴的另一交点为点B. (1)①直接写出点B的坐标; ②求抛物线解析式. (2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标. 18.(2015•鄂州)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B. (1)①直接写出点B的坐标;②求抛物线解析式. (2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标. (3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由. 19.(2014秋•昆明校级期末)如图,四边形DEFG是△ABC的内接矩形,如果△ABC的高线AH长8cm,底边BC长10cm,设DG=xcm,DE=ycm, (1)求y关于x的函数关系式; (2)当x为何值时,四边形DEFG的面积最大?最大面积是多少? 20.(2015秋•保定期末)如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.点P从A出发,沿AB方向,以2cm/s的速度向点B运动,点Q从C出发,沿CA方向,以1cm/s的速度向点A运动;若两点同时出发,当其中一点到达端点时,两点同时停止运动,设运动时间为t(s),△APQ的面积为S(cm2) (1)t=2时,则点P到AC的距离是 cm,S= cm2; (2)t为何值时,PQ⊥AB; (3)t为何值时,△APQ是以AQ为底边的等腰三角形; (4)求S与t之间的函数关系式,并求出S的最大值. 21.(2012•眉山)已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,△OAB是等腰直角三角形. (1)求过A、B、C三点的抛物线的解析式; (2)若直线CD∥AB交抛物线于D点,求D点的坐标; (3)若P点是抛物线上的动点,且在第一象限,那么△PAB是否有最大面积?若有,求出此时P点的坐标和△PAB的最大面积;若没有,请说明理由. 22.(2015秋•随州期末)如图,已知抛物线y=ax2+bx+c经过A (1,0)、B(0,3)及C(3,0)点,动点D从原点O开始沿OB方向以每秒1个单位长度移动,动点E从点C开始沿CO方向以每秒1个长度单位移动,动点D、E同时出发,当动点E到达原点O时,点D、E停止运动. (1)求抛物线的解析式及顶点P的坐标; (2)若F(﹣1,0),求△DEF的面积S与E点运动时间t的函数解析式;当t为何值时,△DEF的面积最大?最大面积是多少? (3)当△DEF的面积最大时,抛物线的对称轴上是否存在一点N,使△EBN是直角三角形?若存在,求出N点的坐标,若不存在,请说明理由. 23.(2014秋•香洲区期末)已知二次函数中x和y的部分对应值如下表: x … ﹣1 0 1 2 3 … y … 0 ﹣3 ﹣4 ﹣3 0 … (1)求二次函数的解析式; (2)如图,点P是直线BC下方抛物线上一动点,当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积; (3)在抛物线上,是否存在一点Q,使△QBC中QC=QB?若存在请直接写出Q点的坐标. 24.如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B. (1)①直接写出点B的坐标;②求抛物线解析式. (2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标. (3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由. 25.(2015秋•綦江区期末)如图,在平面直角坐标系中,直线y=x+3分别交x轴、y轴于A,C两点,抛物线y=ax2+bx+c(a≠0),经过A,C两点,与x轴交于点B(1,0). (1)求抛物线的解析式; (2)点D为直线AC上一点,点E为抛物线上一点,且D,E两点的横坐标都为2,点F为x轴上的点,若四边形ADEF是平行四边形,请直接写出点F的坐标; (3)若点P是线段AC上的一个动点,过点P作x轴的垂线,交抛物线于点Q,连接AQ,CQ,求△ACQ的面积的最大值. 26.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去三个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( ) A.cm2 B.cm2 C.cm2 D.cm2 27.如图,矩形ABCD的两边长AB=18 cm,AD=4 cm,点P,Q分别从A,B同时出发,P在边AB上沿AB方向以每秒2 cm的速度匀速运动,Q在边BC上沿BC方向以每秒1 cm的速度匀速运动.设运动时间为x(秒),△PBQ的面积为y(cm2). (1)求y关于x的函数关系式,并写出x的取值范围; (2)求△PBQ的面积的最大值. 28.如图,抛物线与x轴交于A、B两点,与y轴交于点C(0,-3). (1)求k的值及点A、B的坐标; (2)设抛物线的顶点为M,求四边形ABMC的面积; (3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由. (4)在抛物线上求点Q,使△BCQ是以BC为直角边的直角三角形. 29.如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 30.如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是且经过A、C两点,与x轴的另一交点为点B. (1)①直接写出点B的坐标;②求抛物线解析式. (2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标; (3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由. 31.如图,在平面直角坐标系中,以点B(0,8)为端点的射线BG∥轴,点A是射线BG上的一个动点(点A与点B不重合).在射线AG上取AD=OB,作线段AD的垂直平分线,垂足为E,且与轴交于点F,过点A作AC⊥OA,交射线EF于点C.连接OC、CD,设点A的横坐标为. (1)用含的式子表示点E的坐标为 ; (2)当点C与点F不重合时,设△OCF的面积为,求与之间的函数关系式. (3)当为何值时,∠OCD=180°? 32.如图,抛物线y=x2-x-12与x轴交于A、C两点,与y轴交于B点. (1)求△AOB的外接圆的面积; (2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动。问当t为何值时,以A、P、Q为顶点的三角形与△OAB相似? (3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N. ①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由. ②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBAN面积的最大值. 33.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转900,得到△DOC。抛物线y=ax2+bx+c经过点A、B、C。 (1)求抛物线的解析式; (2)若点P是第二象限内抛物线上的动点,其横坐标为t。 ①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F。求出当△CEF与△COD相似时点P的坐标; ②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD面积的最大值;若不存在,请说明理由。 34.如图,在Rt△ABC中,∠B=90°,AB= 3 cm,BC= 4 cm.点P从点A出发,以1 cm/s的速度沿AB运动;同时,点Q从点B出发,以2 cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动. (1)试写出△PBQ的面积 S (cm2)与动点运动时间 t (s)之间的函数表达式; (2)运动时间 t 为何值时,△PBQ的面积最大?最大值是多少?. 35.己知:二次函数与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标分别为一元二次方程的两个根. (1)求出该二次函数表达式及顶点坐标; (2)如图1,在抛物线对称轴上是否存在点P,使△APC的周长最小,若存在,请求出点P的坐标:若不存在,请说明理由; (3)如图2,连接AC、BC,点Q是线段OB上一个动点(点Q不与点O、B重合).过点Q作QD∥AC交BC于点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值. 36.如图1,已知:抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,经过B,C两点的直线是y=x-2,连结AC. (1)求出抛物线的函数关系式; (2)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由. (3)点P(t,0)是x轴上一动点,P、Q两点关于直线BC成轴对称,PQ交BC于点M,作QH⊥x轴于点H.连结OQ,是否存在t的值,使△OQH与△APM相似?若存在,求出t的值;若不存在,说明理由. 37.基本模型 如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC=90°,易得△AFE∽△BCF. (1)模型拓展: 如图2,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE∽△BCF; (2)拓展应用:如图3,AB是半圆⊙O的直径,弦长AC=BC=4,E,F分别是AC,AB上的一点,若∠CFE=45°.若设AE=y,BF=x,求出y与x的函数关系式及y的最大值; (3)拓展提升:如图4,在平面直角坐标系柳中,抛物线y=﹣(x+4)(x﹣6)与x轴交于点A,C,与y轴交于点B,抛物线的对称轴交线段BC于点E,探求线段AB上是否存在点F,使得∠EFO=∠BAO?若存在,求出BF的长;若不存在,请说明理由. 38.(12分)(2015•黄冈校级模拟)如图,在直角坐标系xOy中,一次函数y=﹣x+m(m为常数)的图象与x轴交于A(﹣3,0),与y轴交于点C.以直线x=﹣1为对称轴的抛物线y=ax+bx+c(a,b,c为常数,且a>0)经过A,C两点,与x轴正半轴交于点B. (1)求一次函数及抛物线的函数表达式. (2)在对称轴上是否存在一点P,使得△PBC的周长最小?若存在,请求出点P的坐标. (3)点D是线段OC上的一个动点(不与点O、点C重合),过点D作DE‖PC交x轴于点E,连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.并说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由. 39.如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A、C、D均在坐标轴上,且AB=5,sinB=. (1)求过A、C、D三点的抛物线的解析式; (2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围; (3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A、E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值. 40.如图,在平面直角坐标系xoy中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0)和点B,与y轴交于点C,直线x=1是该抛物线的对称轴. (1)求抛物线的解析式; (2)若两动点M、H分别从点A、B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头,并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0).求点M的运动时间t与△APH的面积S的函数关系式,并求出S的最大值. 41.如图抛物线y=ax2+bx+c与x轴交于点A、B,与y轴交于点C(0,-3),顶点D坐标为(-1,-4). (1)求抛物线的解析式; (2)如题图(1),求点A、B的坐标,并直接写出不等式ax2+bx+c>0的解集; (3)如题图(2),连接BD、AD,点P为线段AB上一动点,过点P作直线PQ∥BD交线段AD于点Q,求△PQD面积的最大值. 42.已知抛物线y=+bx+c与直线BC相交于B、C两点,且B(6,0)、C(0,3). (1)填空:b= ,c= ; (2)长度为的线段DE在线段CB上移动,点G与点F在上述抛物线上,且线段EF与DG始终平行于y轴. ①连结FG,求四边形DGFE的面积的最大值,并求出此时点D的坐标; ②在线段DE移动的过程中,是否存在DE=GF?若存在,请直接写出此时点D的坐标;若不存在,试说明理由. 43.如图,抛物线与x轴交于点A、B两点,与y轴交于点C,且A点坐标(-3,0),连接BC、AC. (1)求该抛物线解析式; (2)求AB和OC的长; (3)点E从点B出发,沿x轴向点A运动(点E与点A、B不重合),过点E作直线l平行AC,交BC于点D,设BE的长为m,△BDE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围; (4)在(3)的条件下,连接CE,求△CDE面积的最大值. 44.如图,抛物线y=x2-x-4与坐标轴相交于A、B、C三点,P是线段AB上一动点(端点除外),过P作PD∥AC,交BC于点D,连接CP. (1)直接写出A、B、C的坐标; (2)求抛物线y=x2-x-4的对称轴和顶点坐标; (3)求△PCD面积的最大值,并判断当△PCD的面积取最大值时,以PA、PD为邻边的平行四边形是否为菱形. 45.如图,抛物线y=-x2+bx+c的顶点为D,与x轴交于A(-1,0)、B(3,0),与y轴交于点C. (1)求该抛物线的解析式; (2)若点P为线段BC上的一点(不与B、C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当四边形OBMC的面积最大时,求△BPN的周长; (3)在(2)的条件下,当四边形OBMC的面积最大时,在抛物线的对称轴上是否存在点Q,使得△CNQ为直角三角形?若存在,直接写出点Q的坐标. 46.(12分)如图所示,抛物线与x轴交于A,B两点,与y轴交于C点,且A(﹣2,0)、B(4,0),其顶点为D,连接BD,点P是线段BD上的一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE. (1)求抛物线的解析式,并写出顶点D的坐标; (2)设P点的坐标为(x,y),△PBE的面积为S,求S与x之间的函数关系式,写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取值最大值时,过点P作x轴的垂线,垂足为F,连接EF,△PEF沿直线EF折叠,点P的对应点为点P′,请直接写出P′点的坐标,并判断点P′是否在该抛物线上. 47.(10分)如图①,一次函数的图象与二次函数的图象相交于A,B两点,点A,B的横坐标分别为m,n(m<0,n>0). (1)当m=﹣1,n=4时,k= ,b= ; 当m=﹣2,n=3时,k= ,b= ; (2)根据(1)中的结果,用含m,n的代数式分别表示k与b,并证明你的结论; (3)利用(2)中的结论,解答下列问题:如图②,直线AB与x轴,y轴分别交于点C,D,点A关于y轴的对称点为点E,连接AO,OE,ED. ①当m=﹣3,n>3时,求的值(用含n的代数式表示); ②当四边形AOED为菱形时,m与n满足的关系式为 ; 当四边形AOED为正方形时,m= ,n= . 48.已知:二次函数y=ax2+bx+6(a≠0)的图象与x轴交于A.B两点(点A在点B的左侧),图象与y轴交于点C,点A.点B的横坐标是方程x2-4x-12=0的两个根. (1)求出该二次函数的表达式及顶点坐标; (2)如图,连接AC.BC,点P是线段OB上一个动点(点P不与点O、B重合),过点P作PQ∥AC交BC于点Q,当△CPQ的面积最大时,求点P的坐标. 49.(10分)如图,抛物线与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为. (1)求抛物线的解析式并写出其顶点坐标; (2)若动点P在第二象限内的抛物线上,动点N在对称轴l上. ①当PA⊥NA,且PA=NA时,求此时点P的坐标; ②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标. 50.(12分)(2015•郴州)如图,在四边形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果点P由B点出发沿BC方向向点C匀速运动,同时点Q由A点出发沿AB方向向点B匀速运动,它们的速度均为1cm/s,当P点到达C点时,两点同时停止运动,连接PQ,设运动时间为t s,解答下列问题: (1)当t为何值时,P,Q两点同时停止运动? (2)设△PQB的面积为S,当t为何值时,S取得最大值,并求出最大值; (3)当△PQB为等腰三角形时,求t的值. 试卷第19页,总19页 本卷由系统自动生成,请仔细校对后使用,答案仅供参考。 参考答案 1.(1) 抛物线的解析式为y=-x2-2x+3;(2) ①(-1,4)或(-2,3);②. 【解析】 试题分析:(1)先求出A、B、C的坐标,再运用待定系数法就可以直接求出二次函数的解析式; (2)①由(1)的解析式可以求出抛物线的对称轴,分类讨论当∠CEF=90°时,当∠CFE=90°时,根据相似三角形的性质就可以求出P点的坐标; ②先运用待定系数法求出直线CD的解析式,设PM与CD的交点为N,根据CD的解析式表示出点N的坐标,再根据S△PCD=S△PCN+S△PDN就可以表示出三角形PCD的面积,运用顶点式就可以求出结论. 试题解析:(1)在Rt△AOB中,OA=1,tan∠BAO==3, ∴OB=3OA=3. ∵△DOC是由△AOB绕点O逆时针旋转90°而得到的, ∴△DOC≌△AOB, ∴OC=OB=3,OD=OA=1, ∴A、B、C的坐标分别为(1,0),(0,3)(-3,0). 代入解析式为,解得:. ∴抛物线的解析式为y=-x2-2x+3; (2)①∵抛物线的解析式为y=-x2-2x+3, ∴对称轴l=-=-1, ∴E点的坐标为(-1,0). 如图,当∠CEF=90°时,△CEF∽△COD.此时点P在对称轴上,即点P为抛物线的顶点,P(-1,4); 当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于点M,则△EFC∽△EMP. ∴, ∴MP=3EM. ∵P的横坐标为t, ∴P(t,-t2-2t+3). ∵P在第二象限, ∴PM=-t2-2t+3,EM=-1-t, ∴-t2-2t+3=-(t-1)(t+3), 解得:t1=-2,t2=-3(因为P与C重合,所以舍去), ∴t=-2时,y=-(-2)2-2×(-2)+3=3. ∴P(-2,3). ∴当△CEF与△COD相似时,P点的坐标为:(-1,4)或(-2,3); ②设直线CD的解析式为y=kx+b,由题意,得 , 解得:, ∴直线CD的解析式为:y=x+1. 设PM与CD的交点为N,则点N的坐标为(t,t+1), ∴NM=t+1. ∴PN=PM-NM=-t2-2t+3-(t+1)=-t2-t+2. ∵S△PCD=S△PCN+S△PDN, ∴S△PCD=PNCM+PNOM =PN(CM+OM) =PNOC =×3(-t2-t+2) =-(t+)2+, ∴当t=-时,S△PCD的最大值为. 考点:二次函数综合题. 2.(1) y=x2-x-2.(2)证明见解析;(3). 【解析】 试题分析:(1)由直线y=x-2交x轴、y轴于B、C两点,则B、C坐标可求.进而代入抛物线y=ax2-x+c,即得a、c的值,从而有抛物线解析式. (2)求证三角形为直角三角形,我们通常考虑证明一角为90°或勾股定理.本题中未提及特殊角度,而已知A、B、C坐标,即可知AB、AC、BC,则显然可用勾股定理证明. (3)在直角三角形中截出矩形,面积最大,我们易得两种情形,①一点为C,AB、AC、BC边上各有一点,②AB边上有两点,AC、BC边上各有一点.讨论时可设矩形一边长x,利用三角形相似等性质表示另一边,进而描述面积函数.利用二次函数最值性质可求得最大面积. 试题解析:(1)∵直线y=x-2交x轴、y轴于B、C两点, ∴B(4,0),C(0,-2), ∵y=ax2-x+c过B、C两点, ∴, 解得 , ∴y=x2-x-2. (2)如图1,连接AC, ∵y=x2-x-2与x负半轴交于A点, ∴A(-1,0), 在Rt△AOC中, ∵AO=1,OC=2, ∴AC=, 在Rt△BOC中, ∵BO=4,OC=2, ∴BC=2, ∵AB=AO+BO=1+4=5, ∴AB2=AC2+BC2, ∴△ABC为直角三角形. (3)△ABC内部可截出面积最大的矩形DEFG,面积为,理由如下: ①一点为C,AB、AC、BC边上各有一点,如图2,此时△AGF∽△ACB∽△FEB. 设GC=x,AG=-x, ∵, ∴, ∴GF=2-2x, ∴S=GCGF=x(2-2x)=-2x2+2x=-2[(x-)2-]=-2(x-)2+, 即当x=时,S最大,为. ②AB边上有两点,AC、BC边上各有一点,如图3,此时△CDE∽△CAB∽△GAD, 设GD=x, ∵, ∴, ∴AD=x, ∴CD=CA-AD=, ∵, ∴, ∴DE=5-x, ∴S=GDDE=x(5-x)=-x2+5x=-[(x-1)2-1]=-(x-1)2+. 即x=1时,S最大,为. 综上所述,△ABC内部可截出面积最大的矩形DEFG,面积为. 考点:二次函数综合题. 3.(1)56-2x;(2)小娟的说法正确;理由见解析. 【解析】 试题分析:(1)根据BC的长=三边的总长54米-AB-CD+门的宽度,列式可得; (2)根据矩形面积=长×宽列出函数关系式,配方可得面积最大情况. 试题解析:(1)设AB=x米,可得BC=54-2x+2=56-2x; (2)小娟的说法正确; 矩形面积S=x(56-2x)=-2(x-14)2+392, ∵56-2x>0, ∴x<28, ∴0<x<28, ∴当x=14时,S取最大值, 此时x≠56-2x, ∴面积最大的不是正方形. 考点:二次函数的应用. 4.(1)、;(2)、;(3)、(0,)或(0,-) 【解析】 试题分析:(1)、将A、B、C三点的坐标代入函数解析式,利用待定系数法求出函数解析式;(2)、首先设H(x,y),求出S与x的函数关系式,然后利用求最值的方法求出最值;(3)、根据函数解析式求出顶点G的坐标,求出AM的长度,得到MG=MA,以点M为圆心,MG为半径的圆过点A、B,与y轴交于点Q1、Q2 ,连结Q1G、Q1A、Q1M,根据同弧所对的圆周角等于圆心角的一半得出∠AG=45°,然后分情况求出点Q的坐标. 试题解析:(1)、二次函数过三点A(6,0)B(-2,0)C(0,-3) 设,则有且, ∴,, ∴ (2)、设,,S=+=×3+×6 = == 当,S有最大值,. (3)、∵ ∴顶点G坐标为(2,-4) 对称轴与x轴交于点M ∴ ∴MG=MA 以点M为圆心,MG为半径的圆过点A、B,与y轴交于点Q1、Q2 ,连结Q1G、Q1A、Q1M ∵同弧所对的圆周角等于圆心角的一半 ∴ Rt△Q1OM中 ∵OM=2 Q1M=4 ∴ ∴Q1(0,) 由对称性可知:Q2(0,-)若点Q在线段Q1Q2 之间时,如图,延长AQ交⊙M于点P, ∵∠APG=∠AQ1G=45°,且∠AQG>∠APG ∴∠AQG>45° ∴点Q不在线段Q1Q2 之间 若点Q在线段Q1Q2 之外时,同理可得,∠AQG<45°, ∴点Q不在线段Q1Q2 之外 综上所述,点Q的坐标为(0,)或(0,-) 考点:(1)、二次函数的综合应用;(2)、圆的基本性质. 5.(1)A(-3,0),B(1,0),C(0,3);(2)H(-2,3);(3). 【解析】 试题分析:(1)通过解析式即可得出C点坐标,令y=0,解方程得出方程的解,即可求得A、B的坐标. (2)根据AB的长和三角形面积求得H的纵坐标为3,代入解析式即可求得横坐标; (3)设M点横坐标为m,则PM=-m2-2m+3,MN=(-m-1)×2=-2m-2,矩形PMNQ的周长d=-2m2-8m+2,将-2m2-8m+2配方,根据二次函数的性质,即可得出m的值,然后求得直线AC的解析式,把x=m代入可以求得三角形的边长,从而求得三角形的面积. 试题解析:(1)由抛物线y=-x2-2x+3可知,C(0,3), 令y=0,则0=-x2-2x+3,解得x=-3或x=1, ∴A(-3,0),B(1,0). (2)∵A(-3,0),B(1,0). ∴AB=4, ∵△HAB的面积是6,点H是第二象限内抛物线上的一点, ∴H的纵坐标为3, 把y=3代入y=-x2-2x+3得3=-x2-2x+3,解得x1=0,x2=-2, ∴H(-2,3); (3)由抛物线y=-x2-2x+3可知,对称轴为x=-1, 设M点的横坐标为m,则PM=-m2-2m+3,MN=(-m-1)×2=-2m-2, ∴矩形PMNQ的周长=2(PM+MN)=(-m2-2m+3-2m-2)×2=-2m2-8m+2=-2(m+2)2+10, ∴当m=-2时矩形的周长最大. ∵A(-3,0),C(0,3),设直线AC解析式为y=kx+b, 则解得:, ∴解析式y=x+3,当x=-2时,则E(-2,1), ∴EM=1,AM=1, ∴S=×AM×EM=. 考点:二次函数综合题. 6.(1)、秒;(2)秒;(3)当t=时△PCQ的面积最大,最大面积为. 【解析】 试题分析:(1)分别表示出线段CP和线段CQ的长,利用三角形的面积公式列出方程求解即可; (2)表示出线段CP和CQ后利用勾股定理列出方程求解即可; (3)列出△PCQ的面积关于t的函数解析式,配方可得最大值. 试题解析:(1)设t秒后△PCQ的面积等于4,根据题意得:CQ=t,BP=2t,则CP=7-2t, CQ×CP=×t(7-2t)=4, 整理,得:t1=,t2=, 故若P、Q同时分别从B、C出发,那么、秒后,△PCQ的面积等于4; (2)若PQ的长度等于5,则PC2+QC2=PQ2, 即:(7-2t)2+t2=25,- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 最大 面积 问题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文