函数及其表示知识点+练习题+答案.doc
《函数及其表示知识点+练习题+答案.doc》由会员分享,可在线阅读,更多相关《函数及其表示知识点+练习题+答案.doc(7页珍藏版)》请在咨信网上搜索。
函数及其表示考纲知识梳理 一、函数与映射的概念 函数 映射 两集合 设是两个非空数集 设是两个非空集合 对应关系 如果按照某种确定的对应关系,使对于集合中的任意一个数,在集合中都有唯一确定的数和它对应。 如果按某一个确定的对应关系,使对于集合中的任意一个元素,在集合中都有唯一确定的元素与之对应。 名称 称为从集合到集合的一个函数 称为从集合到集合的一个映射 记法 , 对应是一个映射 注:函数与映射的区别:函数是特殊的映射,二者区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集。 二、函数的其他有关概念 (1)函数的定义域、值域 在函数,中,叫做自变量,的取值范围叫做函数的定义域;与的值相对应的值叫做函数值,函数值的集合叫做函数的值域 (2)一个函数的构成要素 定义域、值域和对应法则 (3)相等函数 如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数。 注:若两个函数的定义域与值域相同,是否为相等函数?(不一定。如果函数y=x和y=x+1,其定义域与值域完全相同,但不是相等函数;再如y=sinx与y=cosx,其定义域为R,值域都为[-1,1],显然不是相等函数。因此凑数两个函数是否相等,关键是看定义域和对应关系) (4)函数的表示方法 表示函数的常用方法有:解析法、图象法和列表法。 (5)分段函数 若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数。 分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是个函数。 函数及其表示测试题 1、设函数则不等式的解集是( A ) A. B. C. D. 解析 由已知,函数先增后减再增 当,令 解得。 当, 故 ,解得 2、试判断以下各组函数是否表示同一函数? (1)f(x)=,g(x)=; (2)f(x)=,g(x)= (3)f(x)=,g(x)=()2n-1(n∈N*); (4)f(x)=,g(x)=; (5)f(x)=x2-2x-1,g(t)=t2-2t-1。 解:(1)由于f(x)==|x|,g(x)==x,故它们的值域及对应法则都不相同,所以它们不是同一函数; (2)由于函数f(x)=的定义域为(-∞,0)∪(0,+∞),而g(x)=的定义域为R,所以它们不是同一函数; (3)由于当n∈N*时,2n±1为奇数, ∴f(x)==x,g(x)=()2n-1=x,它们的定义域、值域及对应法则都相同,所以它们是同一函数; (4)由于函数f(x)=的定义域为{x|x≥0},而g(x)=的定义域为{x|x≤-1或x≥0},它们的定义域不同,所以它们不是同一函数; (5)函数的定义域、值域和对应法则都相同,所以它们是同一函数 注:对于两个函数y=f(x)和y=g(x),当且仅当它们的定义域、值域、对应法则都相同时,y=f(x)和y=g(x)才表示同一函数若两个函数表示同一函数,则它们的图象完全相同,反之亦然。 3、 求下列函数的值域: (1);(2);(3); (4);(5);(6); (7);(8); 解:(1)(配方法), ∴的值域为 (2)求复合函数的值域: 设(),则原函数可化为 又∵, ∴,故, ∴的值域为 (3)(法一)反函数法: 的反函数为,其定义域为, ∴原函数的值域为 (法二)分离变量法:, ∵,∴, ∴函数的值域为 (4)换元法(代数换元法):设,则, ∴原函数可化为,∴, ∴原函数值域为 注:总结型值域, 变形:或 (5)三角换元法: ∵,∴设, 则 ∵,∴,∴, ∴, ∴原函数的值域为 (6)数形结合法:, ∴,∴函数值域为 (7)判别式法:∵恒成立,∴函数的定义域为 由得: ① ①当即时,①即,∴ ②当即时,∵时方程恒有实根, ∴△, ∴且, ∴原函数的值域为 (8), ∵,∴, ∴, 当且仅当时,即时等号成立 ∴, ∴原函数的值域为 4、求函数的解析式 (1)已知,求; (2)已知,求; (3)已知是一次函数,且满足,求; (4)已知满足,求; 解:(1)配凑法:∵, ∴(或); (2)换元法:令(),则, ∴,; (3)待定系数法:设, 则, ∴,, ∴; (4)方程组法: ① 把①中的换成,得 ②, ①②得 ∴。 5.设a是正数,ax+y=2(x≥0,y≥0),记y+3x-x2的最大值是M(a),试求:M(a)的表达式; 解 将代数式y+3x-x2表示为一个字母,由ax+y=2解出y后代入消元,建立关于x的二次函数,逐步进行分类求M(a)。 设S(x)=y+3x-x2,将y=2-ax代入消去y,得: S(x)=2-ax+3x-x2 =-x2+(3-a)x+2 =-[x-(3-a)]2+(3-a)2+2(x≥0) ∵y≥0 ∴2-ax≥0 而a>0 ∴0≤x≤ 下面分三种情况求M(a) (i)当0<3-a<(a>0),即 时 解得 0<a<1或2<a<3时 M(a)=S(3-a)= (3-a)2+2 (ii)当3-a≥(a>0)即 时, 解得:1≤a≤2,这时 M(a)=S()=2-a·+3·-· =-+ (iii)当3-a≤0;即a≥3时 M(a)=S(0)=2 综上所述得: M(a)=- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 及其 表示 知识点 练习题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文