课时跟踪检测(十七)任意角和弧度制及任意角的三角函数.doc
《课时跟踪检测(十七)任意角和弧度制及任意角的三角函数.doc》由会员分享,可在线阅读,更多相关《课时跟踪检测(十七)任意角和弧度制及任意角的三角函数.doc(5页珍藏版)》请在咨信网上搜索。
课时跟踪检测(十七) 任意角和弧度制及任意角的三角函数 第Ⅰ组:全员必做题 1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A. B. C.- D.- 2.已知cos θ·tan θ<0,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 3.已知角α和角β的终边关于直线y=x对称,且β=-,则sin α=( ) A.- B. C.- D. 4.点P从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,则Q点的坐标为( ) A. B. C. D. 5.给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④,其中符号为负的是( ) A.① B.② C.③ D.④ 6.在直角坐标系中,O是原点,A(,1),将点A绕O逆时针旋转90°到B点,则B点坐标为__________. 7.如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为,则cos α=________. 8.设角α是第三象限角,且=-sin,则角是第________象限角. 9.一个扇形OAB的面积是1 cm2,它的周长是4 cm,求圆心角的弧度数和弦长AB. 10.已知sin α<0,tan α>0. (1)求α角的集合; (2)求终边所在的象限; (3)试判断tansincos的符号. 第Ⅱ组:重点选做题 1.满足cos α≤-的角α的集合为________. 2.如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为________. 答 案 第Ⅰ组:全员必做题 1.选C 将表的分针拨快应按顺时针方向旋转,为负角. 故A、B不正确,又因为拨快10分钟,故应转过的角为圆周的.即为-×2π=-. 2.选C 易知sin θ<0,且cos θ≠0,∴θ是第三或第四象限角. 3.选D 因为角α和角β的终边关于直线y=x对称,所以α+β=2kπ+(k∈Z), 又β=-,所以α=2kπ+(k∈Z), 即得sin α=. 4.选A 由三角函数定义可知Q点的坐标(x,y)满足x=cos=-,y=sin=. 5.选C sin(-1 000°)=sin 80°>0; cos(-2 200°)=cos(-40°)=cos 40°>0; tan(-10)=tan(3π-10)<0; =,sin>0,tan<0,∴原式>0. 6.解析:依题意知OA=OB=2,∠AOx=30°,∠BOx=120°, 设点B坐标为(x,y),所以x=2cos 120°=-1,y=2sin 120°=,即B(-1,). 答案:(-1,) 7.解析:因为A点纵坐标yA=,且A点在第二象限,又因为圆O为单位圆,所以A点横坐标xA=-,由三角函数的定义可得cos α=-. 答案:- 8.解析:由α是第三象限角,知2kπ+π<α<2kπ+(k∈Z),kπ+<<kπ+(k∈Z),知是第二或第四象限角,再由=-sin知sin<0,所以只能是第四象限角. 答案:四 9.解:设圆的半径为r cm, 弧长为l cm, 则解得 ∴圆心角α==2. 如图,过O作OH⊥AB于H. 则∠AOH=1弧度. ∴AH=1·sin 1=sin 1(cm), ∴AB=2sin 1(cm). 10.解:(1)由sin α<0, 知α在第三、四象限或y轴的负半轴上; 由tan α>0,知α在第一、三象限, 故α角在第三象限,其集合为 . (2)由(2k+1)π<α<2kπ+, 得kπ+<<kπ+,k∈Z, 故终边在第二、四象限. (3)当在第二象限时, tan<0,sin>0,cos<0, 所以tansincos取正号; 当在第四象限时,tan<0,sin<0,cos>0, 所以tansincos也取正号. 因此,tansincos取正号. 第Ⅱ组:重点选做题 1.解析:作直线x=-交单位圆于C、D两点,连接OC、OD,则OC与OD围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为 α. 答案: 2.解析:如图,连接AP,分别过P,A作PC,AB垂直x轴于C,B点,过A作AD⊥PC于D点.由题意知的长为2. ∵圆的半径为1, ∴∠BAP=2, 故∠DAP=2-. ∴DP=AP·sin=-cos 2, ∴PC=1-cos 2,DA=APcos= sin 2.∴OC=2-sin 2. 故=(2-sin 2,1-cos 2). 答案:(2-sin 2,1-cos 2)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课时 跟踪 检测 十七 任意 弧度 三角函数
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文