函数与一元二次方程关系.doc
《函数与一元二次方程关系.doc》由会员分享,可在线阅读,更多相关《函数与一元二次方程关系.doc(5页珍藏版)》请在咨信网上搜索。
第21课时 用函数观点看一元二次方程(一) 朱红旗 一、学习目标 体会二次函数与方程之间的联系。理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系, 二、学习过程 1.直线与轴交于点 ,与轴交于点 。 2.一元二次方程,当Δ 时,方程有两个不相等的实数根;当Δ 时,方程有两个相等的实数根;当Δ 时,方程没有实数根; 3.解下列方程(1) (2) (3) 4.观察二次函数的图象,写出它们与轴的交点坐标: 函数 图 象 交 点 与轴交点坐标是 与轴交点坐标是 与轴交点坐标是 4.对比第1题各方程的解,你发现什么? 归纳:⑴一元二次方程的实数根就是对应的二次函数与轴交点的 .(即把代入) ⑵二次函数与一元二次方程的关系如下:(一元二次方程的实数根记为) 二次函数 与 一元二次方程 与轴有 个交点 0,方程有 的实数根 与轴有 个交点;这个交点是 点 0,方程有 实数根 与轴有 个交点 0,方程 实数根. 例1 已知二次函数y=2x2-(4k+1)x+2k2-1的图象与x轴交于两点.求k的取值范围. 例2、画出函数y=x2-x-3/4的图象,根据图象回答下列问题。 (1)图象与x轴交点的坐标是什么; (2)当x取何值时,y=0?这里x的取值与方程x2-x-=0有什么关系? 教学要点 (1).先让学生回顾函数y=ax2+bx+c图象的画法,按列表、描点、连线等步骤画出函数y=x2-x-的图象。(2).观察图象,图象与x轴交点的坐标分别是(-,0)和(,0)。6.对于问题(3),教师组织学生分组讨论、交流,达成共识:从“形”的方面看,函数y=x2-x-的图象与x轴交点的横坐标,即为方程x2-x-=0的解;从“数”的方面看,当二次函数y=x2-x-的函数值为0时,相应的自变量的值即为方程x2-x-=0的解。更一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解。 分析:二次函数与一元二次不等式有什么关系? 根据上面的图象回答下列问题。 (1)当x取何值时,y<0?当x取何值时,y>0? (当-<x<时,y<0;当x<-或x>时,y>0) (2)能否用含有x的不等式来描述(1)中的问题? (能用含有x的不等式采描述(1)中的问题,即x2-x-<0的解集是什么?x2-x->0的解集是什么?) 想一想:二次函数与一元二次不等式有什么关系? (1)从“形”的方面看,二次函数y=ax2+bJ+c在x轴上方的图象上的点的横坐标,即为一元二次不等式ax2+bx+c>0的解;在x轴下方的图象上的点的横坐标.即为一元二次不等式ax2+bx+c<0的解。 (2)从“数”的方面看,当二次函数y=ax2+bx+c的函数值大于0时,相应的自变量的值即为一元二次不等式ax2+bx+c>0的解;当二次函数y=ax2+bx+c的函数值小于0时,相应的自变量的值即为一元二次不等式ax2+bc+c<0的解。这一结论反映了二次函数与一元二次不等式的关系。 三、练习1. 二次函数,当=1时,=______;当=0时,=______. 2.抛物线与轴的交点坐标是 ,与轴的交点坐标是 ; 3. 已知抛物线的顶点在x轴上,则=____________. 4.已知抛物线与轴有两个交点,则的取值范围是_________. 第22课时 用函数观点看一元二次方程(二) 朱红旗 一、学习目标 1. 能根据图象判断二次函数的符号; 2.能根据图象判断一些特殊方程或不等式是否成立。 二、学习过程(主要是巩固上节课内容) 1、根据的图象和性质填表:(的实数根记为) (1)抛物线与轴有两个交点 0; (2)抛物线与轴有一个交点 0; (3)抛物线与轴没有交点 0. 2.抛物线和抛物线与轴的交点坐标分别是 和 。抛物线与轴的交点坐标分别是 . 3、 抛物线 ① 开口向上,所以可以判断 。 ② 对称轴是直线= ,由图象可知对称轴在轴的右侧,则>0,即 >0,已知 0,所以可以判定 0. ③ 因为抛物线与轴交于正半轴,所以 0. ④ 抛物线与轴有两个交点,所以 0; 4、⑴的符号由 决定:①开口向 0;②开口向 0.⑵的符号由 决定:① 在轴的左侧 ;② 在轴的右侧 ;③ 是轴 0.⑶的符号由 决定:①点(0,)在轴正半轴 0;②点(0,)在原点 0③点(0,)在轴负半轴 0.⑷的符号由 决定: ①抛物线与轴有 交点 0 方程有 实数根; ②抛物线与轴有 交点 0 方程有 实数根; ③抛物线与轴有 交点 0 方程 实数根; ④特别的,当抛物线与x轴只有一个交点时,这个交点就是抛物线的 点. 5、抛物线如图所示:看图填空: (1)_____0;(2) 0;(3) 0;(4) 0 ;(5)______0; (6);(7);(8);(9) 6、抛物线y=ax2+bx+c与x轴的公共点是(-1,0)、(3,0),求抛物线的对称轴. 7、画出函数y=x2-2x-3的图象,根据图象回答: ①方程x2-2x-3=0的解是什么? ②x取什么值时,函数值大于0;x取什么值时,函数值小于0? 8 已知抛物线y1=2x2-8x+k+8和直线y2=mx+1相交于点P(3,4m)。 (1)求这两个函数的关系式; (2)当x取何值时,抛物线与直线相交,并求交点坐标。 9.利用函数的图象求下列方程的解。(1)、, (2)、 10.填空。(1)抛物线y=x2-x-2与x轴的交点坐标是______,与y轴的交点坐标是______。 (2)抛物线y=2x2-5x+3与y轴的交点坐标是______,与x轴的交点坐标是______。 11.已知抛物线y=x2+x-k与直线y=-2x+1的交点的纵坐标为3。(1)求抛物线的关系式;(2)求抛物线y=x2+x-k与直线y=-2x+1的另一个交点坐标. 12.已知抛物线y=ax2+bx+c与直线y=x-2相交于(m,-2),(n,3)两点,且抛物线的对称轴为直线x=3,求函数的关系式。 13. 二次函数y=x2-3x-18的图象与x轴有两交点,求两交点间的距离。 14.已知函数y=x2-x-2。(1)先确定其图象的开口方向、对称轴和顶点坐标,再画出图象 (2)观察图象确定:x取什么值时,①y=0,②y>0;③y<0。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 一元 二次方程 关系
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文