二次函数与几何的综合.doc
《二次函数与几何的综合.doc》由会员分享,可在线阅读,更多相关《二次函数与几何的综合.doc(6页珍藏版)》请在咨信网上搜索。
二次函数与几何的综合 靖江外国语学校 殷建涛 近年来,二次函数与几何的综合题成为中考的热点.解决这类问题需要用到数形结合思想,把“数”与“形”结合起来,相互渗透.下面就二次函数与三角形、四边形、圆的综合运用分别举例分析. 1.二次函数与三角形 例1.(苏州2014)如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE. (1)用含m的代数式表示a; (2)求证:为定值; (3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由. 分析: (1)由C在二次函数y=a(x2﹣2mx﹣3m2)上,则其横纵坐标必满足方程,代入即可得到a与m的关系式. (2)求证为定值,一般就是计算出AD、AE的值,然后相比.而求其长,过E、D作x轴的垂线段,进而通过设边长,利用直角三角形性质得方程求解,是求解此类问题的常规思路,如此易得定值. (3)要使线段GF、AD、AE的长度为三边长的三角形是直角三角形,且(2)中,则可考虑若GF使得AD:GF:AE=3:4:5即可.由AD、AE、F点都易固定,且G在x轴的负半轴上,则易得G点大致位置,可连接CF并延长,证明上述比例AD:GF:AE=3:4:5即可. 解: (1)将C(0,﹣3)代入二次函数y=a(x2﹣2mx﹣3m2),则﹣3=a(0﹣0﹣3m2), 解得 . (2)证明:如图1,过点D、E分别作x轴的垂线,垂足为M、N. 由a(x2﹣2mx﹣3m2)=0, 解得 则 A(﹣m,0),B(3m,0). ∵CD∥AB, ∴点D的坐标为(2m,﹣3). ∵AB平分∠DAE, ∴∠DAM=∠EAN, ∵∠DMA=∠ENA=90°, ∴△ADM∽△AEN. ∴. 设E坐标为 ∴, ∴x=4m, ∴E(4m,5), ∵AM=AO+OM=m+2m=3m,AN=AO+ON=m+4m=5m, ∴,即为定值. (3)如图2,记二次函数图象顶点为F,则F的坐标为(m,﹣4),过点F作FH⊥x轴于点H. 连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G. ∵tan∠CGO=,tan∠FGH=, ∴, ∴OG=3m. ∵GF===4, AD===3, ∴. ∵, ∴AD:GF:AE=3:4:5, ∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为﹣3m. 点评: 本题考查了二次函数性质、勾股定理及利用直角三角形性质求解边长等知识,总体来说本题虽难度较大,但问题之间的提示性较明显,所以是一道质量较高的题目. 2.二次函数与四边形 例2.(连云港2014) 已知二次函数y=x2+bx+c,其图象抛物线交x轴于点A(1,0),B(3,0),交y轴于点C,直线l过点C,且交抛物线于另一点E(点E不与点A、B重合). (1)求此二次函数关系式; (2)若直线l1经过抛物线顶点D,交x轴于点F,且l1∥l,则以点C、D、E、F为顶点的四边形能否为平行四边形?若能,求出点E的坐标;若不能,请说明理由. (3)若过点A作AG⊥x轴,交直线l于点G,连接OG、BE,试证明OG∥BE. 分析: (1)由二次函数y=x2+bx+c,其图象抛物线交x轴于点A(1,0),B(3,0),直接利用待定系数法求解,即可求得此二次函数关系式; (2)以点C、D、E、F为顶点的四边形构成平行四边形,有两种情形,需要分类讨论,避免漏解: ①若CD为平行四边形的对角线,如图2﹣1所示; ②若CD为平行四边形的边,如图2﹣2所示; (3)首先过点E作轴于点H,设直线CE的解析式为:y=kx+3,然后分别求得点G与E的坐标,即可证得△OAG∽△BHE,则可得∠AOG=∠HBE,继而可证得OG∥BE. 解: (1)二次函数y=x2+bx+c,其图象抛物线交x轴于点A(1,0),B(3,0), ∴, 解得:, ∴此二次函数关系式为:y=x2﹣4x+3; (2)假设以点C、D、E、F为顶点的四边形能成为平行四边形. ①若CD为平行四边形的对角线,如答图2﹣1. 过点D作DM⊥AB于点M,过点E作EN⊥OC于点N, ∵y=x2﹣4x+3=(x﹣2)2﹣1, ∴点D(2,﹣1),点C(0,3), ∴DM=1, ∵l1∥l, ∴当CE=DF时,四边形CEDF是平行四边形, ∴∠ECF+∠CFD=180°, ∵∠OCF+∠OFC=90°, ∴∠ECN+∠DFM=90°, ∵∠DFM+∠FDM=90°, ∴∠ECN=∠FDM, ∴△ECN≌△FDM(AAS), ∴CN=DM=1, ∴ON=OC﹣CN=3﹣1=2, 当y=2时,x2﹣4x+3=2, 解得:x=2±; ②若CD为平行四边形的边,如答图2﹣2,则EF∥CD, 且EF=CD. 过点D作DM⊥y轴于点M,则DM=2,OM=1,CM=OM+OC=4; 过点E作EN⊥x轴于点N. 易证△CDM≌△EFN,∴EN=CM=4. ∴x2﹣4x+3=4, 解得:x=2±. 综上所述,以点C、D、E、F为顶点的四边形能成为平行四边形;点E的坐标为(2+,2)、(2﹣,2)、 (2+,4)、(2﹣,4). (3)如图②,过点E作EH⊥x轴于点H, 设直线CE的解析式为:y=kx+3, ∵A(1,0),AG⊥x轴, ∴点G(1,k+3), 即OA=1,AG=k+3, ∵E是直线与抛物线的交点, ∴, 解得: ∴点E(k+4,(k+1)(k+3)), ∴BH=OH﹣OB=k+3,EH=(k+1)(k+3), ∴, ∵∠OAG=∠BHE=90°, ∴△OAG∽△BHE, ∴∠AOG=∠HBE, ∴OG∥BE. 点评: 此题属于二次函数的综合题、综合性较强,难度较大,主要考查了待定系数法求二次函数的解析式、一次函数与二次函数的交点问题、平行四边形的性质以及相似三角形的判定与性质等知识.注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用. 3.二次函数与圆 例3.(盐城2014) 如图①,在平面直角坐标系中,一块等腰直角三角板ABC的直角顶点A在y轴上,坐标为(0,﹣1),另一顶点B坐标为(﹣2,0),已知二次函数y=x2+bx+c的图象经过B、C两点.现将一把直尺放置在直角坐标系中,使直尺的边A′D′∥y轴且经过点B,直尺沿x轴正方向平移,当A′D′与y轴重合时运动停止. (1)求点C的坐标及二次函数的关系式; (2)若运动过程中直尺的边A′D′交边BC于点M,交抛物线于点N,求线段MN长度的最大值; (3)如图②,设点P为直尺的边A′D′上的任一点,连接PA、PB、PC,Q为BC的中点,试探究:在直尺平移的过程中,当PQ=时,线段PA、PB、PC之间的数量关系.请直接写出结论,并指出相应的点P与抛物线的位置关系. (说明:点与抛物线的位置关系可分为三类,例如,图②中,点A在抛物线内,点C在抛物线上,点D′在抛物线外.) 分析: (1)求C点坐标,考虑作x,y轴垂线,表示横纵坐标,易得△CDA≌△AOB,所以C点坐标易知.进而抛物线解析式易得. (2)横坐标相同的两点距离,可以用这两点的纵坐标作差,因为两点分别在直线BC与抛物线上,故可以利用解析式,设横坐标为x,表示两个纵坐标.作差记得关于x的二次函数,利用最值性质,结果易求. (3)计算易得,BC=,因为Q为BC的中点,PQ=恰为半径,P点必在圆上.此时连接PB,PC,PA,因为BC为直径,故BP2+CP2=BC2为定值,而PA不固定,但不超过BC,所以易得结论BP2+CP2≥PA2,题目要求考虑三种情况,其中P在抛物线上时,P点只能与B或C重合,此时,PA,PB,PC可求具体值,则有等量关系. 解:(1)如图1,过点C作CD⊥y轴于D,此时△CDA≌△AOB, ∵△CDA≌△AOB, ∴AD=BO=2,CD=AO=1, ∴OD=OA+AD=3, ∴C(﹣1,﹣3). 将B(﹣2,0),C(﹣1,﹣3)代入抛物线y=x2+bx+c, 解得 b=,c=﹣3,∴抛物线的解析式为y=x2+x﹣3. (2)设lBC:y=kx+b, ∵B(﹣2,0),C(﹣1,﹣3),[来源:学.科.网] ∴,解得 , ∴lBC:y=﹣3x﹣6, 设M(xM,﹣3xM﹣6),N(xN,xN2+xN﹣3), ∵xM=xN(记为x),yM≥yN, ∴线段MN长度=﹣3x﹣6﹣(x2+x﹣3)=﹣(x+)2+,(﹣2≤x≤﹣1), ∴当x=﹣时,线段MN长度为最大值. (3)答:P在抛物线外时,BP2+CP2≥PA2;P在抛物线上时,BP+CP=AP;P在抛物线内,BP2+CP2≥PA2. 如图2,以Q点为圆心,为半径作⊙Q, ∵OB=2,OA=1, ∴AC=AB==, ∴BC==, ∴BQ=CQ=, ∵∠BAC=90°, ∴点B、A、C都在⊙Q上. ①P在抛物线外, 如图3,在抛物线外的弧BC上任找一点P,连接PC,PB,PA, ∵BC为直径, ∴BP2+CP2=BC2,BC≥PA, ∴BP2+CP2≥PA2. ②P在抛物线上,此时,P只能为B点或者C点, ∵AC=AB=, ∴AP=, ∵BP+CP=BC=, ∴BP+CP=AP. ③P在抛物线内,同理①, ∵BC为直径, ∴BP2+CP2=BC2,BC≥PA, ∴BP2+CP2≥PA2. 点评: 本题考查了三角形全等、抛物线图象与性质、函数性质及圆的基础知识,是一道综合性比较强的题目.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 几何 综合
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文