反比例函数及其图象.doc
《反比例函数及其图象.doc》由会员分享,可在线阅读,更多相关《反比例函数及其图象.doc(3页珍藏版)》请在咨信网上搜索。
反比例函数及其图象 教学目标: 1、使学生理解反比例函数的概念; 2、使学生能根据问题中的条件确定反比例函数的解析式; 3、能结合图象理解反比例函数的性质。 4、培养学生用“数形结合”的思想与方法解决数学问题。 重点:反比例函数的图象的画法及性质 难点: 1、选取适当的点画反比例函数的图象; 2、结合反比例函数图象说出它们的性质。 教学过程: 一、复习引入 1、什么叫一次函数?什么叫正比例函数?写出它们的一般式。它们有何关系? 2、正比例函数的图象与性质: 正比例函数 反比例函数 解析式 y=kx(k≠0) y=k/x或(k≠0) 图象 经过(0,0)与(1,k)两点的直线 双曲线 当k>0时,图象经过一、三象限;当k<0时,图象经过二、四象限; 当k>0时,图象经过一、三象限;当k<0时,图象经过二、四象限; 性质 当k>0时,Y随着X的增大而增大;当k<0时,Y随着X的增大而减小; 当k>0时,Y随着X的增大而减小;当k<0时,Y随着X的增大而增大; 3、 学过反比例关系下面我们举几个例子 例1 矩形的面积是12cm2,写出矩形的一边y(cm)和另一边x(cm)之间的用函数关系式. 例2 两个变量x和y的乘积等于-6,写出y与x之间的函数关系式. 4、提出问题: 上面两个问题从关系式看,它们是不是正比例函数?为什么? 答:不是,因为不符合正比例函数y=kx的形式,它们的关系是反比例关系. 二、讲解新课 1、反比例函数的定义 一般地, (k为常数,k≠0)叫做反比例函数,即y是x的反比例函数,也可以写成 xy=k 例1 .知函数y=(m2+m-2)xm-2m-9是反比例函,求m的值。 例2. 已知变量y与x成反比例,当x=3时,y=―6;那么当y=3时,x的值是 例3、 已知点A(―2,a)在函数的图像上,则a= ; 2、反比例函数的图象 例4、画出反比例函数与的图象(师生分别画图) 步骤:(1)列表(强调x不能取0,为保证其图的对称性,x要取适当的值) (2)描点(准确性要高) (3)连线(用一条平滑曲线根据自变量由小到大的顺序把这些点连结起来) 归纳: (1)反比例函数的图象由两条曲线组成,叫做双曲线。 (2)讨论反比例函数图象的画法: A、反比例函数的图象不是直线,“两点法”是不能画的,它的图象是双曲线,图象关于原点成中心对称.列表时自变量的值可以选取绝对值相等而符号相反的数(如±1,±2等等)相应地就得到绝对值相等而符号相反的对应的函数值.这样即可以简化计算的手续,又便于在坐标平面内找到点. B.反比例函数的图象的两支都无限地接近但永远不能达到x轴和y轴,所以图象与x轴y轴没有交点.如果发现画的图象“无限接近”坐标轴后,又偏离坐标轴,这也是错误的,教师可在课堂上演示,并说明错误的原因. C.选取的点越多画的图越准确; D.画图注意其美观性(对称性、延伸特征) 3、反比例函数的性质 再让学生观察黑板上的图,提问: (1)当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化? (2)当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化?这两个问题由学生讨论总结之后回答。 教师板书: (1)当k>0时,函数图象的两个分支分别分布在第一、三象限内,在每一个象限中,y随x的增大而减小;当k<0时,两个分支分别分布在第二、四象限内,在每一个象限中,y随x的增大而增大. (2)两个分支都无限接近但永远不能达到x轴和y轴.4、反比例函数的这一性质与正比例函数的性质有何异同? 例6、已知函数在每一象限内,y随x的减小而减小,那么k的取值范围是 例7、在同一坐标系中,函数和y=kx+3的图像大致是( ) A B C D 4.课堂练习:第129页1、2、3 5.课堂小结:本节课我们学习了反比例函数的定义、图像的画法及反比例函数性质同学们下去以后对照习题要认真体会。 6.课堂作业:课本第130页习题- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反比例 函数 及其 图象
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文