高三数学二轮专题复习:第13课时---数列-(2).doc
《高三数学二轮专题复习:第13课时---数列-(2).doc》由会员分享,可在线阅读,更多相关《高三数学二轮专题复习:第13课时---数列-(2).doc(5页珍藏版)》请在咨信网上搜索。
第13课时 数列(2) ★ 高考趋势★ 等差数列等比数列在高考中属必考内容,从近几年的高考来看等差等比数列在填空题和解答题中都有,通常考察等差等比数列的的通项公式,前n项和公式,以及概念和性质。通常在知识的交汇点处设计题目,对知识考察的同时也伴随着对思想方法的考察,难易程度为中档题和较难题 ,有时作为压轴题出现。 一 基础再现 考点1、等差数列 1. 在等差数列中,若,则的值为 16 . 2.等差数列共有项,其中奇数项之和为319,偶数项之和为290,则其中间项为______________. 3. 已知两个等差数列和的前项和分别为A和,且,= . 考点2、等比数列 4. 在各项都为正数的等比数列中,首项,前三项和为21,则 5. 已知等比数列的各项都为正数,它的前三项依次为1,,则数列的通项公式是= . 6. 三个数成等比数列,且,则的取值范围是 . 考点3、等差数列与等比数列综合应用 7.设等比数列的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值 为 . 8. 对于数列,定义数列满足: ,(),定义数列满足: ,(),若数列中各项均为1,且,则__________. 二 感悟解答 1.解:利用等差数列的性质得: ,,= 2.解:依题意,中间项为,于是有 解得.1分析:本题主要是考查等比数列的基本概念和性质,可利用方程思想将等比数列问题转化为和处理,也可利用等比数列的定义进行求解.设公比为,由题知,得或(舍去),∴ 3.解:解法1:“若,则”解析:= 解法2: 可设,,则, ,则= 4. 解:84 5. 解:.=. 6.解:. 解:设,则有. 当时,,而,;当时,,即,而,,则,故 7.解:,,则有, ,.,时, 8. 解:由数列中各项均为1,知数列是首项为,公差为1的等差数列,所以,.这说明,是关于的二次函数,且二次项系数为,由,得,从而. 点评:等差比数列的通项公式和前n项和的公式是数列中的基础知识,必须牢固掌握. 三 范例剖析 例1 数列的前项和记为. (Ⅰ)求的通项公式; (Ⅱ)等差数列的各项为正,其前项和为,且,又成等比数列,求. 辨析:已知数列的前三项与数列的前三项对应相同,且 对任意的都成立,数列是等差数列. ⑴求数列与的通项公式; ⑵是否存在,使得,请说明理由. 例2 已知各项均为正数的数列{}满足(),且是的等差中项. (Ⅰ)求数列{}的通项公式; (Ⅱ)若=,求使S>50成立的正整数n的 最小值. 变式: 已知递增的等比数列{}满足,且是,的等差中项. (1) 求{}的通项公式; (2) 若,求使成立的的最小值. 例3 数列{an}中,a1=8,a4=2,且满足:an+2-2an+1+an=0(n∈N*), (Ⅰ)求数列{an}的通项公式; (Ⅱ)设,是否存在最大的整数m,使得任意的n均有总成立?若存在,求出m;若不存在,请说明理由. 辨析:已知数列{an}的前n项为和Sn,点(n,)在直线y= x+上.数列{bn}满足 bn+2-2bn+1+bn=0(nÎN*),且b3=11,前9项和为153. (1)求数列{an},{bn}的通项公式; (2)设cn= ,数列{cn}的前n项和为Tn,求使不等式Tn>对一切nÎN*都成立的最大正整数k的值; (3)设nÎN*,f(n)= 问是否存在mÎN*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,请说明理由. 四 巩固训练 1. 等差数列{an}中,Sn是其前n项和,则S2008的值为 2:已知等比数列中,则其前三项的和的取值范围是 3:定义“等积数列”:在一个数列中,如果每一项与它的后一项的积都为同一常数,那么这个数列叫做已知数列,这个常数叫该数列的公鸡积,已知数列I等级数列,且=2,公积为5,为数列的前n项和,则= 4.在数列{an}中,a1=1,an+1=(n∈N*),则是这个数列的第_________项. 5.已知数列中,,且对时,有 . (Ⅰ)设数列满足,证明数列为等比数列,并求数列的通项公式; (Ⅱ)记,求数列的前n项和Sn. 6.已知数列{an}满足:a1=a,an+1= (1)若a=20,求数列{an}的前30项和S30的值; (2)求证:对任意的实数a,总存在正整数m,使得当n>m(nÎN*)时,an+4=an成立. 用心 爱心 专心- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 二轮 专题 复习 13 课时 数列
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文