【2013版中考12年】浙江省金华市2002-2013年中考数学试题分类解析-专题12-押轴题.doc
《【2013版中考12年】浙江省金华市2002-2013年中考数学试题分类解析-专题12-押轴题.doc》由会员分享,可在线阅读,更多相关《【2013版中考12年】浙江省金华市2002-2013年中考数学试题分类解析-专题12-押轴题.doc(69页珍藏版)》请在咨信网上搜索。
【2013版中考12年】浙江省金华市2002-2013年中考数学试题分类解析 专题12 押轴题 一、选择题 1. (2002年浙江金华、衢州4分)如图,D是△ABC的AB边上一点,过D作DE∥BC, 交AC于E,已知,那么的值为【 】 (A) (B) (C) (D) 2. (2003年浙江金华、衢州4分)如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是【 】 3. (2004年浙江金华4分)下列图形中,不是立方体表面展开图的是( ) 4. (2005年浙江金华4分)如图,矩形ABCD中,E,F分别是AB,CD的中点,点O1,O2在线段EF上,与矩形ABCD的边DA,AB,BC都相切,⊙O2与⊙O2外切,且与DC边相切于点F,如果⊙O1,⊙O2的半径分别是4cm,2cm,那么矩形ABCD的面积为【 】 A、20 B、24 C、40 D、96 5. (2006年浙江金华4分)二次函数()的图象如图所示,则下列结论: ①>0; ②>0; ③>0,其中正确的个数是【 】 A. 0个 B. 1个 C. 2个 D. 3个 6. (2007年浙江金华4分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是【 】 A.0 B.1 C.2 D.3 7. (2008年浙江金华3分)三军受命,我解放军各部队奋力抗战地救灾一线。现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是【 】 A、1 B、2 C、3 D、4 8. (2009年浙江金华3分)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑 车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图像大致是【 】 9. (2010年浙江金华3分)如图,在等腰梯形ABCD中,AB∥CD, 对角线AC⊥BC,∠B=60º,BC=2cm,则梯形ABCD的面积为【 】 A.cm2 B.6 cm2 C.cm2 D.12 cm2 10. (2011年浙江金华、丽水3分)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是【 】 A、点(0,3) B、点(2,3) C、点(5,1) D、点(6,1) 11. (2012年浙江金华、丽水3分)小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是【 】 A.2010 B.2012 C.2014 D.2016 12.(2013年浙江金华、丽水3分)如图1,在Rt△ABC中,∠ACB=900,点P以每秒1cm的速度从点A出发,沿折线AC-CB运动,到点B停止。过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示。当点P运动5秒时,PD的长是【 】 A.1.5cm B.1.2cm C.1.8cm D.2cm 二、填空题1. (2002年浙江金华、衢州5分)函数的图象与x轴有且只有一个交点,那么a的值和交点坐标分别为 ▲ . 2. (2003年浙江金华、衢州5分)CD是Rt△ABC斜边上的高线,AD、BD是方程的两根,则△ABC的面积为 ▲ . 3. (2004年浙江金华5分)△ABO中,OA=OB=5,OA边上的高线长为4,将△ABO放在平面直角坐标系中,使点O与原点重合,点A在x轴的正半轴上,那么点B的坐标是 ▲ 。 4. (2005年浙江金华5分)在直角坐标系xOy中,O是坐标原点,抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴相交于点C。如果点M在y轴右侧的抛物线上,那么点M的坐标是 ▲ 。 5. (2006年浙江金华5分)如图,点M是直线y=2+3上的动点,过点M作MN垂直于轴于点N, y轴上是否存在点P,使△MNP为等腰直角三角形.小明发现:当动点M运动到(-1,1)时,y轴上存 在点P(0,1),此时有MN=MP,能使△NMP为等腰直角三角形.那么,在y轴和直线上是否还存在符合 条件的点P和点M呢?请你写出其它符合条件的点P的坐标 ▲ . 6. (2007年浙江金华5分)如图,在由24个边长都为1的小正三角形的网格中,点P是正六边形的一个顶点,以点P为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长 ▲ . 7. (2008年浙江金华4分)如图,第(1)个多边形由正三角形"扩展"而来,边数记为α3, .第(2)个多边形由正方形"扩展"而来,边数记为a4,…,依此类推,由正n边形"扩展"而来的多边形的边数记为an(n≥3).则a5的值是 ▲ ;当的结果是时,n的值为 ▲ 。 8. (2009年浙江金华4分)如图,在第一象限内作射线OC,与x轴的夹角为30o,在射线OC上取一点A, 过点A作AH⊥x轴于点H.在抛物线y=x2 (x>0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三 角形与△AOH全等,则符合条件的点A的坐标是 ▲ . 9. (2010年浙江金华4分)如图在边长为2的正方形ABCD中,E,F,O分别是AB,CD,AD的中点, 以O为圆心,以OE为半径画弧EF.P是上的一个动点,连结OP,并延长OP交线段BC于点K,过 点P作⊙O的切线,分别交射线AB于点M,交直线BC于点G. 若,则BK﹦ ▲ . 10. (2011年浙江金华、丽水4分)如图,将一块直角三角板OAB放在平面直角坐标系中,B(2,0),∠AOB=60°,点A在第一象限,过点A的双曲线为.在轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的像是O´B´. (1)当点O´与点A重合时,点P的坐标是 ▲ ; (2)设P(t,0),当O´B´与双曲线有交点时,t的取值范围是 ▲ . 11. (2012年浙江金华、丽水4分)如图,在直角梯形ABCD中,∠A=90°,∠B=120°,AD=,AB=6.在底边AB上取点E,在射线DC上取点F,使得∠DEF=120°. (1)当点E是AB的中点时,线段DF的长度是 ▲ ; (2)若射线EF经过点C,则AE的长是 ▲ . 12.(2013年浙江金华、丽水4分)如图,点P是反比例函数图象上的点,PA垂直x轴于点A (-1,0),点C的坐标为(1,0),PC交y轴于点B,连结AB,已知AB=。 (1)k的值是 ▲ ; (2)若M(a,b)是该反比例函数图象上的点,且满足∠MBA<∠ABC,则a的取值范围是 ▲ 。 三.解答题 1. (2002年浙江金华、衢州12分)如图,在ΔABC中,AC=15,BC=18,sinC=,D是AC上一个动点(不运动至点A,C),过D作DE∥BC,交AB于E,过D作DF⊥BC,垂足为F,连结 BD,设 CD=x. (1)用含x的代数式分别表示DF和BF; (2)如果梯形EBFD的面积为S,求S关于x的函数关系式; (3)如果△BDF的面积为S1,△BDE的面积为S2,那么x为何值时,S1=2S2 2. (2002年浙江金华、衢州14分)如图,已知直线分别与y轴,x轴交于A,B两点,点 M在y轴上,以点M为圆心的⊙M与直线AB相切于点D,连结MD. (1)求证:△ADM∽△AOB; (2)如果⊙M的半径为2,请求出点M的坐标,并写出以为顶点.且过点M的抛物线的解析式; (3)在(2)的条件下,试问在此抛物线上是否存在点P,使得以 P,A,M三点为顶点的三角形与△AOB相似?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由. 3. (2003年浙江金华、衢州12分)如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x. (1)当x为何值时,PQ∥BC; (2)当 ,求 的值; (3)△APQ能否与△CQB相似?若能,求出AP的长;若不能,请说明理由. (3)4. (2003年浙江金华、衢州14分)已知二次函数的图象与x轴交于A,B两点(A点在原点左侧,B点在原点右侧),与y轴交于C点.若AB=4,OB>OA,且OA、OB是方程的两根. (1)请求出A,B两点的坐标; (2)若点O到BC的距离为 ,求此二次函数的解析式; (3)若点P的横坐标为2,且△PAB的外心为M(1,1),试判断点P是否在(2)中所求的二次函数图象上. 5. (2004年浙江金华12分)已知:四边形ABCD为圆内接矩形,过点D作圆的切线DP,交BA的延长线于点P,且PD=15,PA=9。 (1)求AD与AB的长; (2)如果点E为PD的一个动点(不与运动至P,D),过点E作直线EF,交PB于点F,并将四边形PBCD的周长平分,记△PEF的面积为y,PE的长为x,请求出y关于x的函数关系式; (3)如果点E为折线DCB上一个动点(不与运动至D,B),过点E作直线EF交PB于点F,试猜想直线EF能否将四边形PBCD的周长和面积同时平分?若能,请求出BF的长;若不能,请说明理由。 6. (2004年浙江金华14分)如图在平面直角坐标系内,点A与C的坐标分别为(4,8),(0,5),过点A作AB⊥x轴于点B,过OB上的动点D作直线平行于AC,与AB相交于点E,连结CD,过点E作直线EF∥CD,交AC于点F。 (1)求经过点A,C两点的直线解析式; (2)当点D在OB上移动时,能否使四边形CDEF成为矩形?若能,求出此时k、b的值;若不能,请说明理由; (3)如果将直线AC作向上下平移,交Y轴于点Cˊ,交AB于点Aˊ,连结DCˊ,过点E作EFˊ∥DCˊ,交AˊCˊ于点Fˊ,那么能否使四边形CˊDEFˊ成为正方形?若能,请求出此时正方形的面积;若不能,请说明理由。 7. (2005年浙江金华12分)如图,在矩形ABCD中,AD=8,点E是AB边上的一点,AE=,过D,E两点作直线PQ,与BC边所在的直线MN相交于点F。 (1)求tan∠ADE的值; (2)点G是线段AD上的一个动点(不运动至点A,D),GH⊥DE垂足为H,设DG为x,四边形AEHG的面积为y,请求出y与x之间的函数关系式; (3)如果AE=2EB,点O是直线MN上的一个动点,以O为圆心作圆,使⊙O与直线PQ相切,同时又与矩形ABCD的某一边相切。问满足条件的⊙O有几个?并求出其中一个圆的半径。 ∴8. (2005年浙江金华14分) 如图,抛物线经过点O(0,0),A(4,0),B(5,5),点C是y轴负半轴上一点,直线经过B,C两点,且 (1)求抛物线的解析式; (2)求直线的解析式; (3)过O,B两点作直线,如果P是直线OB上的一个动点,过点P作直线PQ平行于y轴,交抛物线于点Q。问:是否存在点P,使得以P,Q,B为顶点的三角形与OBC相似?如果存在,请求出点P的坐标;如果不存在,请说明理由。 9. (2006年浙江金华12分)初三(1)班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架面积最大. 小组讨论后,同学们做了以下三种试验: 请根据以上图案回答下列问题: (1)在图案(1)中,如果铝合金材料总长度(图中所有黑线的长度和)为6m,当AB为1 m, 长方形框架ABCD的面积是 ▲ m2; (2)在图案(2)中,如果铝合金材料总长度为6m,设AB为m,长方形框架ABCD的面积为S= ▲ (用含的代数式表示);当AB= ▲ m时, 长方形框架ABCD的面积S最大:在图案(3)中,如果铝合金材料总长度为m, 设AB为m,当AB= ▲ m时, 长方形框架ABCD的面积S最大. (3)经过这三种情形的试验,他们发现对于图案(4)这样的情形也存在着一定的规律.探索: 如图案(4), 如果铝合金材料总长度为m共有n条竖档时, 那么当竖档AB多少时,长方形框架ABCD的面积最大. 10. (2006年浙江金华14分)如图,平面直角坐标系中,直线AB与轴,轴分别交于A(3,0),B(0,)两点, ,点C为线段AB上的一动点,过点C作CD⊥轴于点D. (1)求直线AB的解析式; (2)若S梯形OBCD=,求点C的坐标; (3)在第一象限内是否存在点P,使得以P,O,B为顶点的三角形与△OBA相似.若存在,请求出所有符合 条件的点P的坐标;若不存在,请说明理由. 11. (2007年浙江金华12分)学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m的小明(AB)的影子BC长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m. (1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G; (2)求路灯灯泡的垂直高度GH; (3)如果小明沿线段BH向小颖(点H)走去,当小明走到BH中点B1处时,求其影子B1C1的长;当小明继续走剩下路程的到B2处时,求其影子B2C2的长;当小明继续走剩下路程的到B3处,…按此规律继续走下去,当小明走剩下路程的到Bn处时,其影子BnCn的长为 ▲ m.(直接用n的代数式表示) 12. (2007年浙江金华14分)如图1,在平面直角坐标系中,已知点A(0,4),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒 个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN. (1)求直线AB的解析式; (2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值; (3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值. 13. (2008年浙江金华10分)如图1,已知双曲线y=(k>0)与直线y=k′x交于A,B两点,点A在第 一象限.试解答下列问题: (1)若点A的坐标为(4,2).则点B的坐标为 ;若点A的横坐标为m,则点B的坐标可表示 为 ; (2)如图2,过原点O作另一条直线l,交双曲线y= (k>0)于P,Q两点,点P在第一象限. ①说明四边形APBQ一定是平行四边形; ②设点A.P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写 出mn应满足的条件;若不可能,请说明理由. 14. (2008年浙江金华12分)如图1,在平面直角坐标系中,已知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD。 (1)求直线AB的解析式; (2)当点P运动到点(,0)时,求此时DP的长及点D的坐标; (3)是否存在点P,使ΔOPD的面积等于,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由。 15. (2009年浙江金华10分)在平面直角坐标系中,O为坐标原点. (1)已知点A(3,1),连结OA,平移线段OA,使点O落在点B.设点A落在点C,作如下探究: 探究一:若点B的坐标为(1,2),请在图1中作出平移后的图像,则点C的坐标是 ▲ ;连结AC,BO,请判断O,A,C,B四点构成的图形的形状,并说明理由; 探究二:若点B的坐标为(6,2),按探究一的方法,判断O,A,B,C四点构成的图形的形状. (温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!) (2)通过上面的探究,请直接回答下列问题: ①若已知三点A (a,b),B(c,d),C (a+c,b+d),顺次连结O,A,C,B,请判断所得到的图形的形状; ②在①的条件下,如果所得到的图形是菱形或者是正方形,请选择一种情况,写出a,b,c,d应满足的 关系式. 16. (2009年浙江金华12分)如图,在平面直角坐标系中,点A(0,6),点B是x轴上的一个动点,连结AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90o,得到线段BC.过点B作x轴的垂线交直线AC于点D.设点B坐标是(t,0). (1)当t=4时,求直线AB的解析式; (2)当t>0时,用含t的代数式表示点C的坐标及△ABC的面积; (3)是否存在点B,使△ABD为等腰三角形?若存在,请求出所有符合条件的点B的坐标;若不存在, 请说明理由. 17. (2010年浙江金华10分)已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y =的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限. (1)如图所示,若反比例函数解析式为y=,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标; (温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!) M1的坐标是 ▲ (2)请你通过改变P点坐标,对直线M1 M的解析式y﹦kx+b进行探究可得 k﹦ ▲ ,若点P的坐标为(m,0)时,则b﹦ ▲ ; (3) 依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标. 18. (2010年浙江金华12分)如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的面四民﹒数学兴趣小组对捐款情况进行了抽样调查,速度分别为1,,2 (长度单位/秒)﹒一直尺的上边缘l从x轴的位置开始以 (长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动. 请解答下列问题: (1)过A,B两点的直线解析式是 ▲ ; (2)当t﹦4时,点P的坐标为 ▲ ;当t ﹦ ▲ ,点P与点E重合; (3)① 作点P关于直线EF的对称点P′. 在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少? ② 当t=2时,是否存在着点Q,使得△FEQ ∽△BEP ?若存在, 求出点Q的坐标;若不存在,请说明理由. 19. (2011年浙江金华、丽水10分)在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在轴和轴的正半轴上,设抛物线过矩形顶点B、C. (1)当n=1时,如果=﹣1,试求的值; (2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式; (3)将矩形OABC绕点O顺时针旋转,使得点B落到轴的正半轴上,如果该抛物线同时经过原点O. ①试求当n=3时的值; ②直接写出关于n的关系式. 20. (2011年浙江金华、丽水12分)如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,并延长AB至点D,使DB=AB,过点D作轴垂线,分别交轴、直线OB于点E、F,点E为垂足,连接CF. (1)当∠AOB=30°时,求弧AB的长度; (2)当DE=8时,求线段EF的长; (3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E的坐标;若不存在,请说明理由. 21. (2012年浙江金华、丽水10分)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC. (1)如图1,当点A的横坐标为 时,矩形AOBC是正方形; (2)如图2,当点A的横坐标为时, ①求点B的坐标; ②将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=-x2,试判断抛物线y=-x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由. 22. (2012年浙江金华、丽水12分)在△ABC中,∠ABC=45°,tan∠ACB=.如图,把△ABC的一边BC放置在x轴上,有OB=14,OC=,AC与y轴交于点E. (1)求AC所在直线的函数解析式; (2)过点O作OG⊥AC,垂足为G,求△OEG的面积; (3)已知点F(10,0),在△ABC的边上取两点P,Q,是否存在以O,P,Q为顶点的三角形与△OFP全等,且这两个三角形在OP的异侧?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由. 23.(2013年浙江金华、丽水10分)如图,已知抛物线与直线交于点O(0,0),。点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E。 (1)求抛物线的函数解析式; (2)若点C为OA的中点,求BC的长; (3)以BC,BE为边构造条形BCDE,设点D的坐标为(m,n),求m,n之间的关系式。 24.(2013年浙江金华、丽水12分)如图1,点A是x轴正半轴上的动点,点B的坐标为(0,4),M是线段AB的中点。将点M绕点A顺时针方向旋转900得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点。连结AC,BC,CD,设点A的横坐标为t, (1)当t=2时,求CF的长; (2)①当t为何值时,点C落在线段CD上; ②设△BCE的面积为S,求S与t之间的函数关系式; (3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到,再将A,B,为顶点的四边形沿剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形。请直接写出符合上述条件的点坐标, 69- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013版中考12年 2013 中考 12 浙江省 金华市 2002 年中 数学试题 分类 解析 专题 押轴题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:【2013版中考12年】浙江省金华市2002-2013年中考数学试题分类解析-专题12-押轴题.doc
链接地址:https://www.zixin.com.cn/doc/5866842.html
链接地址:https://www.zixin.com.cn/doc/5866842.html