【创新设计】2011届高三数学-一轮复习-第2知识块第9讲-函数与方程随堂训练-文-新人教A版.doc
《【创新设计】2011届高三数学-一轮复习-第2知识块第9讲-函数与方程随堂训练-文-新人教A版.doc》由会员分享,可在线阅读,更多相关《【创新设计】2011届高三数学-一轮复习-第2知识块第9讲-函数与方程随堂训练-文-新人教A版.doc(4页珍藏版)》请在咨信网上搜索。
第9讲 函数与方程 一、选择题 1.若函数f(x)=x2+2x+3a没有零点,则实数a的取值范围是( ) A.a< B.a> C.a≤ D.a≥ 解析:由题意,函数f(x)=x2+2x+3a没有零点,即方程x2+2x+3a=0无解,即方程 的判别式小于零,解不等式Δ=22-4×3a<0,解得a>. 答案:B 2.(2009·福建)若函数f(x)的零点与g(x)=4x+2x-2的零点之差的绝对值不超过0.25, 则f(x)可以是( ) A.f(x)=4x-1 B.f(x)=(x-1)2 C.f(x)=ex-1 D.f(x)=ln 解析:∵g′(x)=4xln 4+2>0,∴g(x)在(-∞,+∞)上是递增函数. 又g(0)=1-2=-1<0,g=2+1-2=1>0, ∴g(x)只有一个零点x0,且x0∈. 对于选项A:f(x)=4x-1,其零点为x=, ∴<,故选项A符合. 答案:A 3.(2010·改编题)已知函数f(x)=,若f(0)=-2,f(-1)=1,则 函数g(x)=f(x)+x的零点的个数为( ) A.1 B.2 C.3 D.4 解析:f(0)=-2,即-02+b·0+c=-2,c=-2; f(-1)=1,即-(-1)2+b·(-1)+c=1,故b=-4. 故f(x)=,g(x)=f(x)+x=,令g(x)=0, 则-2+x=0,解得x=2,或-x2-3x-2=0,解得x=-2或-1,故有3个零点. 答案:C 4.(2010·山东枣庄调研)若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈(-1,1]时, f(x)=1-x2,函数g(x)=,则函数h(x)=f(x)-g(x)在区间[-5,10]内零点 的个数为( ) A.12 B.14 C.13 D.8 解析:如右图,当x∈[0,5]时,结合图象知f(x) 与g(x) 共有5个交点,故在区间[-5,0]上共有5 个交点;当x∈(0,10] 时结合图象知共有9个交 点.故函数h(x)=f(x)-g(x)在区间 [-5,10]上共有14 个零点. 答案:B 二、填空题 5.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算f(0)<0,f(0.5)>0可 得其中一个零点x0∈________,第二次应计算________. 解析:∵f(x)=x3+3x-1是R上的连续函数,且f(0)<0,f(0.5)>0,则f(x)在x∈(0,0.5) 上存在零点,且第二次验证时需验证f(0.25)的符号. 答案:(0,0.5) f(0.25) 6.(2009·天津南开调研)若函数f(x)=x2-ax-b的两个零点是2和3,则函数g(x)=bx2 -ax-1的零点是________. 解析:由,得 ∴g(x)=-6x2-5x-1的零点为-,-. 答案:-,- 7.(2010·广东茂名调研)设方程2x+x=4的根为x0,若x0∈,则整数k= ________. 解析:根据题意,当x=时,2x+x<4;当x=时,2x+x>4;所以x0∈,故 整数k=1. 答案:1 三、解答题 8.函数f(x)=x3-3x+2, (1)求f(x)的零点; (2)求分别满足f(x)<0,f(x)=0,f(x)>0的x的取值范围. 解:f(x)=x3-3x+2=x(x-1)(x+1)-2(x-1) =(x-1)(x2+x-2)=(x-1)2(x+2). (1)令f(x)=0,函数f(x)的零点为x=1或x=-2. (2)令f(x)<0,得x<-2; 所以满足f(x)<0的x的取值范围是(-∞,-2); 满足f(x)=0的x的取值集合是{1,-2}; 令f(x)>0,得-2<x<1或x>1,满足f(x)>0的x的取值范围是(-2,1)∪(1,+∞). 9.已知函数f(x)=4x+m·2x+1有且只有一个零点,求实数m的取值范围,并求出零 点. 解:由题意知:方程4x+m·2x+1=0只有一个零点. 令2x=t(t>0),∴方程t2+m·t+1=0只有一个正根, ∴由图象可知∴m=-2. 当m=-2时,t=1,∴x=0.∴函数f(x)的零点为0. 10.若关于x的方程3x2-5x+a=0的一个根在(-2,0)内,另 一 个根在(1,3)内,求a的取值范围. 解:设f(x)=3x2-5x+a,则f(x)为开口向上的抛物线(如图所示). ∵f(x)=0的两根分别在区间(-2, 0),(1, 3)内, ∴ 即 解得-12<a<0.所求a的取值范围是(-12,0). 1.(★★★★)若方程ln x+2x-10=0的解为x0,则不小于x0 的最小整数是( ) A.4 B.5 C.6 D.7 解析:分别作出函数y=ln x与y=10-2x的图象,如图,由图 可得不小于x0的最小整数是5. 答案:B 2.(2010·创新题)设函数f(x)=|x|x+bx+c,给出下列四个命题: ①b=0,c>0时,方程f(x)=0只有一个实数根;②c=0时,y=f(x)是奇函数;③y= f(x)的图象关于点(0,c)对称;④函数f(x)至多有两个零点. 则上述命题中所有正确命题的序号是________. 解析:当b=0,c>0时,f(x)=x|x|+c=0,结合图象知f(x)=0只有一个实数根,故① 正确;当c=0时,f(x)=x|x|+bx,f(-x)=-f(x),故y=f(x)是奇函数,②正确;y=f(x) 的图象可由奇函数g(x)=x|x|+bx向上或向下平移|c|个单位得到,而y=f(x)的图象与y 轴的交点为(0,c),故函数y=f(x)的图象关于点(0,c)对称,③正确;方程|x|x-5x+6 =0有三个解-6、2、3,即三个零点,故④错误. 答案:①②③- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新 设计 2011 届高三 数学 一轮 复习 知识 函数 方程 训练 新人
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:【创新设计】2011届高三数学-一轮复习-第2知识块第9讲-函数与方程随堂训练-文-新人教A版.doc
链接地址:https://www.zixin.com.cn/doc/5854257.html
链接地址:https://www.zixin.com.cn/doc/5854257.html