八年级上册全等三角形复习教案.docx
《八年级上册全等三角形复习教案.docx》由会员分享,可在线阅读,更多相关《八年级上册全等三角形复习教案.docx(10页珍藏版)》请在咨信网上搜索。
全等三角形复习 一、全等三角形 全等三角形的概念及其性质 1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形 。 2、全等三角形性质: (1) 对应边相等 (2)对应角相等(3)周长相等 (4)面积相等 3、全等三角形的判定 边边边:三边对应相等的两个三角形全等(可简写成“SSS”) 边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”) 角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”) 角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”) 方法指引 斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”) 4、证明两个三角形全等的基本思路: 证明两个三角形全等的基本思路: 找夹角 (1):已知两边 ---- (2):已知一边一角 --- 找这边的另一个邻角 (ASA) 已知一边和它的邻角 已知一边和它的对角 找两角的夹边 (ASA) 找夹边外的任意边 (AAS) 练习 二、角的平分线: 熟悉基本图形 1、(性质)角的平分线上的点到角的两边的距离相等. 2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。 【习题讲练】 1 例 1.已知如图(1), DABC ≌ DDCB ,其中的对应边:____与____,____与____,____与____, 对应角:______与_______,______与_______,______与_______. 例 2.如图(2),若 DBOD ≌ DCOE,ÐB = ÐC .指出这两个全等三角形的对应边; 若 DADO ≌ DAEO ,指出这两个三角形的对应角。 (图 1) (图 2) ( 图 3) 例 3.如图(3), DABC ≌ DADE ,BC 的延长线交 DA 于 F,交 DE 于 G, ÐACB = ÐAED =105o, ,求ÐDFB、ÐDGB 的度数. ÐCAD = 10 ,ÐB = ÐD = 25o o 2.全等三角形的判定方法 1)、三边对应相等的两个三角形全等 ( SSS ) 例 1.如图,在 DABC 中,ÐC = 90o ,D、E 分别为 AC、AB 上的点,且 AD=BD,AE=BC,DE=DC. 求证:DE⊥AB。 例 2.如图,AB=AC,BE 和 CD 相交于 P,PB=PC,求证:PD=PE. 2)两边和夹角对应相等的两个三角形全等( SAS ) 3)、两角和夹边对应相等的两个三角形全等 ( ASA ) 例 5.如图,梯形 ABCD 中,AB//CD,E 是 BC 的中点,直线 AE 交 DC 的延长线于 F 4)、两角和夹边对应相等的两个三角形全等 ( AAS ) 例 6.如图,在 DABC 中,AB=AC,D、E 分别在 BC、AC 边上。且ÐADE = ÐB ,AD=DE 求证: DADB ≌ DDEC . 3 3.角平分线 1)。角平分线性质定理:角平分线上的点到这个角两边的距离 A 相等。 逆定理: 到一个叫两边的距离相等的点在这个角的平分线 上。 B C D 例 8.如图,在△ABC 中, , ÐC = 90 平分 , ,那么 D 点 AD ÐCAB BC = 8cm,BD = 5cm 到直线 AB 的距离是 cm. 例 9.如图,已知在 Rt△ABC 中,∠C=90°, BD 平分∠ABC, 交 AC 于 D. (1) 若∠BAC=30°, 则 AD 与 BD 之间有何数量关系,说明你的理由; (2) 若 AP 平分∠BAC,交 BD 于 P, 求∠BPA 的度数. A D C P B 4 2)两边和夹角对应相等的两个三角形全等( SAS ) 3)、两角和夹边对应相等的两个三角形全等 ( ASA ) 例 5.如图,梯形 ABCD 中,AB//CD,E 是 BC 的中点,直线 AE 交 DC 的延长线于 F 4)、两角和夹边对应相等的两个三角形全等 ( AAS ) 例 6.如图,在 DABC 中,AB=AC,D、E 分别在 BC、AC 边上。且ÐADE = ÐB ,AD=DE 求证: DADB ≌ DDEC . 3 3.角平分线 1)。角平分线性质定理:角平分线上的点到这个角两边的距离 A 相等。 逆定理: 到一个叫两边的距离相等的点在这个角的平分线 上。 B C D 例 8.如图,在△ABC 中, , ÐC = 90 平分 , ,那么 D 点 AD ÐCAB BC = 8cm,BD = 5cm 到直线 AB 的距离是 cm. 例 9.如图,已知在 Rt△ABC 中,∠C=90°, BD 平分∠ABC, 交 AC 于 D. (1) 若∠BAC=30°, 则 AD 与 BD 之间有何数量关系,说明你的理由; (2) 若 AP 平分∠BAC,交 BD 于 P, 求∠BPA 的度数. A D C P B 4 2)两边和夹角对应相等的两个三角形全等( SAS ) 3)、两角和夹边对应相等的两个三角形全等 ( ASA ) 例 5.如图,梯形 ABCD 中,AB//CD,E 是 BC 的中点,直线 AE 交 DC 的延长线于 F 4)、两角和夹边对应相等的两个三角形全等 ( AAS ) 例 6.如图,在 DABC 中,AB=AC,D、E 分别在 BC、AC 边上。且ÐADE = ÐB ,AD=DE 求证: DADB ≌ DDEC . 3 3.角平分线 1)。角平分线性质定理:角平分线上的点到这个角两边的距离 A 相等。 逆定理: 到一个叫两边的距离相等的点在这个角的平分线 上。 B C D 例 8.如图,在△ABC 中, , ÐC = 90 平分 , ,那么 D 点 AD ÐCAB BC = 8cm,BD = 5cm 到直线 AB 的距离是 cm. 例 9.如图,已知在 Rt△ABC 中,∠C=90°, BD 平分∠ABC, 交 AC 于 D. (1) 若∠BAC=30°, 则 AD 与 BD 之间有何数量关系,说明你的理由; (2) 若 AP 平分∠BAC,交 BD 于 P, 求∠BPA 的度数. A D C P B 4 2)两边和夹角对应相等的两个三角形全等( SAS ) 3)、两角和夹边对应相等的两个三角形全等 ( ASA ) 例 5.如图,梯形 ABCD 中,AB//CD,E 是 BC 的中点,直线 AE 交 DC 的延长线于 F 4)、两角和夹边对应相等的两个三角形全等 ( AAS ) 例 6.如图,在 DABC 中,AB=AC,D、E 分别在 BC、AC 边上。且ÐADE = ÐB ,AD=DE 求证: DADB ≌ DDEC . 3 3.角平分线 1)。角平分线性质定理:角平分线上的点到这个角两边的距离 A 相等。 逆定理: 到一个叫两边的距离相等的点在这个角的平分线 上。 B C D 例 8.如图,在△ABC 中, , ÐC = 90 平分 , ,那么 D 点 AD ÐCAB BC = 8cm,BD = 5cm 到直线 AB 的距离是 cm. 例 9.如图,已知在 Rt△ABC 中,∠C=90°, BD 平分∠ABC, 交 AC 于 D. (1) 若∠BAC=30°, 则 AD 与 BD 之间有何数量关系,说明你的理由; (2) 若 AP 平分∠BAC,交 BD 于 P, 求∠BPA 的度数. A D C P B 4- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 上册 全等 三角形 复习 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文