反比例函数的图像与性质的教学设计.docx
《反比例函数的图像与性质的教学设计.docx》由会员分享,可在线阅读,更多相关《反比例函数的图像与性质的教学设计.docx(9页珍藏版)》请在咨信网上搜索。
5.2 反比例函数的图像与性质 一、教材分析 函数是研究现实世界变化规律的重要数学模型,学生曾在七年级下册和八年级上册学习过“变量之间的关系”和“一次函数”等内容,对函数已经有了初步的认识.在此基础上研究反比例函数的图像与性质,可进一步积累研究函数性质的方法与经验,有利于形成“函数意识”.反比例函数的图像是“曲线型”的,通过研究曲线的函数图像性质为今后学习二次函数的图像性质奠定基础. 二、学情分析 学生对于画函数图像已经积累了一定的经验,所以画函数图像的过程不仅在于“画”,更在于 “体验”.为引导学生体会函数三种表示方法之间的联系和转化积累经验.九年级的学生已经具备了研究函数图像性质的许多经验,但是受年龄限制数形结合的抽象能力存在较大差异.所以需要我在教学中不仅关注教法,更关注学法指导.同时,因为反比例函数较为抽象,所以学生学完性质直接应用的难度很大.这就需要我精心设计习题帮助学生理解和掌握反比例函数的性质. 三、 教学任务分析 1.经历列表、描点、连线的过程画出反比例函数的图像,初步认识反比例函数图像的形状特征. 2. 理解和掌握反比例函数的性质. 3. 经历探索反比例函数性质的过程,体会函数三种表示方法之间的联系和转化,发展数形结合的意识与能力. 4.使用“发言卡”和“组间批阅法”提高合作学习的效率. 四、教法与学法分析 围绕本节课学习内容的特点和“四基”的要求设计教法与学法如下: 1.画反比例函数图像重在积累活动经验,所以采用体验式教学. 2.观察、探究反比例函数性质重在发散与归纳的过程,所以采用“发言卡”组织学生合作学习. 3.习题是引导学生进一步理解性质的重要环节,重在数学思维的训练,所以采用启发式教学. 4.当堂小测重在落实“双基”,所以采用“组间批阅法”组织学生合作学习. 五、教学过程 (一)探究新课 1.复习导入 (1)反比例函数的定义是 .(答案:,其中) (2)已知反比例函数,若,则= ;若,则= ; ; 等于0(填‘能’或是‘不能’); (3)画函数图像的三个步骤是 、 、 . (答案:列表、描点、连线) 2.体验画图像 请同学们试一试画出反比例函数的图像.(以下内容在学案上呈现) 【自学提示】 (1)第一行中的值选哪些数更有代表性又便于计算?注意表中有个,,图中一格是单位1. (2)在坐标系中描点时,记得点画的“精细”一些哦! (3)由所描点的位置的分布推测所连线的形态. (1)列表: … … … … (2)描点 (3)连线 备用图 学生画完图像后肯定有部分学生画错,甚至是不会画,这时候留出5分钟时间进行小组内订正和“手把手”的“兵教兵”.我在巡视过程的重点在于督促和提示,同时关照组长给予这些同学点拨.提示的内容围绕两个: (1)列表中选择的的数值是否好算好画. (2)连线中不是平滑曲线的学生进行个别提问和提醒. 5分钟后全班展示.展示的内容是列表、连线两个环节的好的作品.并要求展示的学生说出为什么这样做. 我点评的要点是:列表中数据要好好算好标;用平滑曲线反映所描点的位置的趋势. 我追问的要点是:列表中的数据有什么特点?这两条曲线延伸的趋势能判定出与坐标轴有交点吗?这两条曲线与坐标轴有交点吗?(注意:引导学生回答,但是我不给出确切的数学语言表述!!) 我会结合学生的回答穿插入几何画板演示. 【归纳】 反比例函数的图像是由两条 组成的,通常称为 . 3.发散探索 请同学们结合画出反比例函数图像的经验快速画出反比例函数图像的简图(画在课本第153页,图6-3中),并使用“发言卡”探索反比例函数图像的性质. (以下内容在学案上呈现) 【合作提示】 (1)合作技术:每人5张“发言卡”,从4号同学开始,每人找一条,依次发言.2号同学负责记录.特别的,4号同学至少找一条.直到“发言卡”用完,或者是组内没有人再发言为止. (2)探索知识:反比例函数图像的性质可以从列表中的数据中找;可以从画出的图像中找;可以借助一次函数图像性质的经验找. (3)时间5分钟,2号同学汇总汇报,组间补充.需要说明理由的条目请言简意赅;需要反驳的条目请直击要点. 学生们合作学习阶段,我巡视的要点是:根据“发言卡”使用数量判断进行最慢的组和进行最快的组,对于慢的组及时了解他们的困难并给予指导;督促4号同学大胆发言. 组织学生进行全班汇报,板书记录形成反比例函数的图像性质. 我追问的要点是:学生汇报时需要简要说明理由的,但是说理不清楚的地方;调动组间质疑、补充等. 【归纳】 (1)当 时,双曲线分别位于第一、三象限内;当 时,双曲线分别位于第二、四象限内. (2)双曲线是中心对称图形,对称中心是 ;还是轴对称图形,对称轴是 . (3)双曲线的两条分支随着延伸不断接近坐标轴,但是与坐标轴 . (二)巩固提高 【题组1】请同学们完成下列题目: 1.反比例函数的图象的两个分支分布在第 象限. 2.反比例函数图象的对称轴的条数是 . 3.若根据反比例函数()列出下表,则该反比例函数的图象在( ) … … … … A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限 4.若反比例函数()的图象位于第二、四象限,则k的取值可能是( ) A.﹣1 B.2 C.3 D.4 “题组1”的题目都是直接使用反比例函数的图像性质,比较简单,所以要求学生独立完成.完成后先订正答案,再逐题提问学生使用的概念,最后如果有的学生用的是巧法,那么简要说一下所用方法. 【题组2】请同学们完成下列题目: 1.反比例函数的图象在第一、三象限,则m的取值范围是( ) A.m≥1 B.m≤1 C.m>1 D.m<1 2.如图,直线与双曲线的图象的一个交点坐标为(3,6).则它们的另一个交点坐标是 第2题图 第3题图 3.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与轴平行,若正方形的面积等于16,则图中阴影部分的面积等于( ) A.8 B.6 C.4 D.2 “题组2”有一定难度,先订正答案,然后逐题紧扣要点启发学生.我设计的“启发点”分别是: (1)第1题要点在于反比例函数的图像性质既可以“正着”用,也可以“反着”用.这样在前面归纳的基础上加四个字“反之成立”.这样逐步引导学生加深对性质的理解. (2)第2、3题要点在于完善对“对称图形”知识结构的认知.启发学生认识直线、正方形、双曲线都是中心对称图形,那么对称中心重合就是解决它们的关键.由此引导学生把新知识纳入旧有知识体系,加深对性质的理解. (3)两个题组引导学生逐步增强数形结合的能力. 【选作题组】完成迅速想挑战的同学请完成下列题目: 1.已知反比例函数的图象经过点P(,),则这个函数的图象位于 . 2.如图,直线L与双曲线交于A、C两点,将直线L绕点O顺时针旋转α度角(0°<α≤45°),与双曲线交于B、D两点,则四边形ABCD形状一定是( ) A.平行四边形 B.菱形 C.矩形 D.任意四边形 第2题图 第3题图 3.如图,正方形OABC中顶点B在一双曲线上,请在图中画出一条过点B的直线,使之与双曲线的另一支交于点D,且满足线段BD最短. “选做题组”是课堂上应对学生学习能力差异的手段.根据实际课堂时间处理,如果时间允许点拨如下: (1)第1题要点在于数形结合.要么先判断点P在哪里;要么先判断的正负. (2)第2题要点在于利用中心对称之后还需要使用平行四边形及特殊平行四边形的判定. (3)第3题要点在于“正比例+反比例”模型生成的一条“下游命题”. (三)课堂总结 师生共同总结本节课所学知识.以学生为主,后进生参照学案上各环节的归纳内容按图索骥. 1. 通过画出反比例函数的图像,体会函数三种表示方法之间的联系和转化. 2. 反比例函数的图像是由两条曲线组成的,通常称为双曲线;当>时,双曲线分别位于第一、三象限内,反之成立;当<时,双曲线分别位于第二、四象限内,反之成立;双曲线是中心对称图形,对称中心是坐标系的原点;还是轴对称图形,对称轴是一、三象限或是二、四象限的角平分线所在直线;双曲线的两条分支随着延伸不断接近坐标轴,但是与坐标轴没有交点. 3.模型“正比例+反比例”. (四)当堂小测 【合作提示】 (1)采用“组间批阅法”.完成后交给“组号+1”的组长,批阅后“组号+1”的组长负责统计对题数,然后负责对改组进行简要讲解. (2)选做题不再另外加分. 随堂小测:(以下内容在学案上) 1.写出一个图象在二、四象限的反比例函数 . 2.已知反比例函数的图象经过点M(﹣1,﹣4),则这个函数的图象位于( ) A.第一、三象限 B.第二、三象限 C.第二、四象限 D.第三、四象限 3.如图,双曲线与直线相交于A、B两点,A点坐标为(2,3),则B点坐标为 . 第3题图 选做题图 4.(选做题)如图,有反比例函数,的图象和一个半径为的圆,则图中阴影部分的面积是 . 学生组间批阅讲解时,我巡视各组统计加分,当堂反馈. (五)布置作业 必做题:课本第154页,习题6.2,第1、2题. 选做题:课本第154页,习题6.2,第3题. (六)板书设计 §6.2反比例函数的 列表: 图像与性质 (画表格处) (多媒体屏幕) (板书归纳的性质) (班级展示中学生讲解题目板书) 六、教学设计总体思路 1.设计思路 引导学生探索、归纳、理解、掌握反比例函数的图像性质成为贯穿整个教学设计的“线索”.这条线索与五个教学环节之间的关系是: 归纳 探索 理解 掌握 我这样设计的理由是,本节学习内容呈现了由具体到抽象的过程,所以我设计探索、归纳、理解、掌握反比例函数的图像性质为贯穿整个教学设计的“线索”.沿着这条线索我在不同的教学环节设计了不同的教法与学法,使之成为推动课堂学习前进的“动力”. 这是一个发散性探索过程,所以采用合作学习. 2.突破重难点要靠“两条腿”——有效的新课学习过程,高效的习题训练过程. 突破重难点不能只靠“新课教授”环节.学生掌握新知识是一个逐渐的过程,新课教授往往只是“从生活和经验中抽象的过程”,我们还需要设计高效的习题帮助学生再把所学知识“用回到生活和实际中去”.所以本节设计中是依靠“有效的新课学习过程,高效的习题训练过程”两个部分来逐步引导学生理解和掌握反比例函数的图像与性质的.何谓高效的习题,最起码要满足“典型原则”、“层次原则”,再紧扣学生的旧有知识体系设计才算有效果. 3.落实“四基”要靠教法与学法的结合. 落实“四基”不是一句空话,但凭老师的一张嘴、一支粉笔是不够的.最起码老师的教代替不了学生的“基本数学活动经验”的生成.所以这就需要研究教法和学法,更要研究教法和学法的结合问题.所以本节课根据学生的知识结构、能力基础和本节所学知识的特点在不同的环节采用了相应的教法和学法.这样做是否科学还有待检验,这本身就是实验的过程,但是实践了总是有收获的. 第 9 页 共 9 页- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反比例 函数 图像 性质 教学 设计
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文