一元二次方程教案(全章).doc
《一元二次方程教案(全章).doc》由会员分享,可在线阅读,更多相关《一元二次方程教案(全章).doc(53页珍藏版)》请在咨信网上搜索。
尤新教育辅导学校 第二十三章 一元二次方程 23.1 一元二次方程 第一课时 教学内容 一元二次方程概念及一元二次方程一般式及有关概念. 教学目标 了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目. 1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义. 2.一元二次方程的一般形式及其有关概念. 3.解决一些概念性的题目. 4.态度、情感、价值观 4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情. 重难点关键 1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题. 2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念. 教学过程 一、复习引入 学生活动:列方程. 问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?” 大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少? 如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________. 整理、化简,得:__________. 问题(2)如图,如果,那么点C叫做线段AB的黄金分割点. 如果假设AB=1,AC=x,那么BC=________,根据题意,得:________. 整理得:_________. 问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少? 如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______. 整理,得:________. 老师点评并分析如何建立一元二次方程的数学模型,并整理. 二、探索新知 学生活动:请口答下面问题. (1)上面三个方程整理后含有几个未知数? (2)按照整式中的多项式的规定,它们最高次数是几次? (3)有等号吗?或与以前多项式一样只有式子? 老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程. 因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程. 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式. 一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项. 例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项. 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等. 解:去括号,得: 40-16x-10x+4x2=18 移项,得:4x2-26x+22=0 其中二次项系数为4,一次项系数为-26,常数项为22. 例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项. 分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式. 解:去括号,得: x2+2x+1+x2-4=1 移项,合并得:2x2+2x-4=0 其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4. 三、巩固练习 教材P32 练习1、2 四、应用拓展 例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程. 分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可. 证明:m2-8m+17=(m-4)2+1 ∵(m-4)2≥0 ∴(m-4)2+1>0,即(m-4)2+1≠0 ∴不论m取何值,该方程都是一元二次方程. 五、归纳小结(学生总结,老师点评) 本节课要掌握: (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用. 六、布置作业 1.教材P34 习题22.1 1、2. 2.选用作业设计. 作业设计 一、选择题 1.在下列方程中,一元二次方程的个数是( ). ①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-=0 A.1个 B.2个 C.3个 D.4个 2.方程2x2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为( ). A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,6 3.px2-3x+p2-q=0是关于x的一元二次方程,则( ). A.p=1 B.p>0 C.p≠0 D.p为任意实数 二、填空题 1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________. 2.一元二次方程的一般形式是__________. 3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________. 三、综合提高题 1.a满足什么条件时,关于x的方程a(x2+x)=x-(x+1)是一元二次方程? 2.关于x的方程(2m2+m)xm+1+3x=6可能是一元二次方程吗?为什么? 3.一块矩形铁片,面积为1m2,长比宽多3m,求铁片的长,小明在做这道题时,是这样做的: 设铁片的长为x,列出的方程为x(x-3)=1,整理得:x2-3x-1=0.小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程: 第一步: x 1 2 3 4 x2-3x-1 -3 -3 所以,________<x<__________ 第二步: x 3.1 3.2 3.3 3.4 x2-3x-1 -0.96 -0.36 所以,________<x<__________ (1)请你帮小明填完空格,完成他未完成的部分; (2)通过以上探索,估计出矩形铁片的整数部分为_______,十分位为______. 答案: 一、1.A 2.B 3.C 二、1.3,-2,-4 2.ax+bx+c=0(a≠0) 3.a≠1 三、1.化为:ax2+(a-+1)x+1=0,所以,当a≠0时是一元二次方程. 2.可能,因为当, ∴当m=1时,该方程是一元二次方程. 3.(1)-1,3,3,4,-0.01,0.36,3.3,3.4 (2)3,3 23.1 一元二次方程 第二课时 教学内容 1.一元二次方程根的概念; 2.根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目. 教学目标 了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题. 提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题. 重难点关键 1.重点:判定一个数是否是方程的根; 2.难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根. 教学过程 一、复习引入 学生活动:请同学独立完成下列问题. 问题1.如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米? 设梯子底端距墙为xm,那么, 根据题意,可得方程为___________. 整理,得_________. 列表: x 0 1 2 3 4 5 6 7 8 … 问题2.一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少? 设苗圃的宽为xm,则长为_______m. 根据题意,得________. 整理,得________. 列表: x 0 1 2 3 4 5 6 7 8 9 10 11 老师点评(略) 二、探索新知 提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少? (2)如果抛开实际问题,问题1中还有其它解吗?问题2呢? 老师点评:(1)问题1中x=6是x2-36=0的解,问题2中,x=10是x2+2x-120=0的解. (3)如果抛开实际问题,问题(1)中还有x=-6的解;问题2中还有x=-12的解. 为了与以前所学的一元一次方程等只有一个解的区别,我们称: 一元二次方程的解叫做一元二次方程的根. 回过头来看:x2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解. 例1.下面哪些数是方程2x2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4. 分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可. 解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根. 例2.你能用以前所学的知识求出下列方程的根吗? (1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0 分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义. 解:(1)移项得x2=64 根据平方根的意义,得:x=±8 即x1=8,x2=-8 (2)移项、整理,得x2=2 根据平方根的意义,得x=± 即x1=,x2=- (3)因为x2-3x=x(x-3) 所以x2-3x=0,就是x(x-3)=0 所以x=0或x-3=0 即x1=0,x2=3 三、巩固练习 教材P33 思考题 练习1、2. 四、应用拓展 例3.要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应该怎样剪? 设长为xcm,则宽为(x-5)cm 列方程x(x-5)=150,即x2-5x-150=0 请根据列方程回答以下问题: (1)x可能小于5吗?可能等于10吗?说说你的理由. (2)完成下表: x 10 11 12 13 14 15 16 17 … x2-5x-150 (3)你知道铁片的长x是多少吗? 分析:x2-5x-150=0与上面两道例题明显不同,不能用平方根的意义和八年级上册的整式中的分解因式的方法去求根,但是我们可以用一种新的方法──“夹逼”方法求出该方程的根. 解:(1)x不可能小于5.理由:如果x<5,则宽(x-5)<0,不合题意. x不可能等于10.理由:如果x=10,则面积x2-5x-150=-100,也不可能. (2) x 10 11 12 13 14 15 16 17 …… x2-5x-150 -100 -84 -66 -46 -24 0 26 54 …… (3)铁片长x=15cm 五、归纳小结(学生归纳,老师点评) 本节课应掌握: (1)一元二次方程根的概念及它与以前的解的相同处与不同处; (2)要会判断一个数是否是一元二次方程的根; (3)要会用一些方法求一元二次方程的根. 六、布置作业 1.教材P34 复习巩固3、4 综合运用5、6、7 拓广探索8、9. 2.选用课时作业设计. 作业设计 一、选择题 1.方程x(x-1)=2的两根为( ). A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=2 2.方程ax(x-b)+(b-x)=0的根是( ). A.x1=b,x2=a B.x1=b,x2= C.x1=a,x2= D.x1=a2,x2=b2 3.已知x=-1是方程ax2+bx+c=0的根(b≠0),则=( ). A.1 B.-1 C.0 D.2 二、填空题 1.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________. 2.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________. 3.方程(x+1)2+x(x+1)=0,那么方程的根x1=______;x2=________. 三、综合提高题 1.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值. 2.如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根. 3.在一次数学课外活动中,小明给全班同学演示了一个有趣的变形,即在()2-2x+1=0,令=y,则有y2-2y+1=0,根据上述变形数学思想(换元法),解决小明给出的问题:在(x2-1)2+(x2-1)=0中,求出(x2-1)2+(x2-1)=0的根. 答案: 一、1.D 2.B 3.A 二、1.9,-9 2.-13 3.-1,1- 三、1.由已知,得a+b=-3,原式=(a+b)2=(-3)2=9. 2.a+c=b,a-b+c=0,把x=-1代入得 ax2+bx+c=a×(-1)2+b×(-1)+c=a-b+c=0, ∴-1必是该方程的一根. 3.设y=x2-1,则y2+y=0,y1=0,y2=-1, 即当x2-1=0,x1=1,x2=-1; 当y2=-1时,x2-1=-1,x2=0, ∴x3=x4=0, ∴x1=1,x2=-1,x3=x4=0是原方程的根. 23.2 直接开平方法(直接开方法) 教学内容 运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程. 教学目标 理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题. 提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程. 重难点关键 1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想. 2.难点与关键:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程. 教学过程 一、复习引入 学生活动:请同学们完成下列各题 问题1.填空 (1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2. 问题2.如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2? 老师点评: 问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 . 问题2:设x秒后△PBQ的面积等于8cm2 则PB=x,BQ=2x 依题意,得:x·2x=8 x2=8 根据平方根的意义,得x=±2 即x1=2,x2=-2 可以验证,2和-2都是方程x·2x=8的两根,但是移动时间不能是负值. 所以2秒后△PBQ的面积等于8cm2. 二、探索新知 上面我们已经讲了x2=8,根据平方根的意义,直接开平方得x=±2,如果x换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢? (学生分组讨论) 老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±2 即2t+1=2,2t+1=-2 方程的两根为t1=-,t2=-- 例1:解方程:x2+4x+4=1 分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1. 解:由已知,得:(x+2)2=1 直接开平方,得:x+2=±1 即x+2=1,x+2=-1 所以,方程的两根x1=-1,x2=-3 例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率. 分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2 解:设每年人均住房面积增长率为x, 则:10(1+x)2=14.4 (1+x)2=1.44 直接开平方,得1+x=±1.2 即1+x=1.2,1+x=-1.2 所以,方程的两根是x1=0.2=20%,x2=-2.2 因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%. (学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么? 共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”. 三、巩固练习 教材P36 练习. 四、应用拓展 例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少? 分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2. 解:设该公司二、三月份营业额平均增长率为x. 那么1+(1+x)+(1+x)2=3.31 把(1+x)当成一个数,配方得: (1+x+)2=2.56,即(x+)2=2.56 x+=±1.6,即x+=1.6,x+=-1.6 方程的根为x1=10%,x2=-3.1 因为增长率为正数, 所以该公司二、三月份营业额平均增长率为10%. 五、归纳小结 本节课应掌握: 由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的. 六、布置作业 1.教材P45 复习巩固1、2. 2.选用作业设计: 一、选择题 1.若x2-4x+p=(x+q)2,那么p、q的值分别是( ). A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2 2.方程3x2+9=0的根为( ). A.3 B.-3 C.±3 D.无实数根 3.用配方法解方程x2-x+1=0正确的解法是( ). A.(x-)2=,x=± B.(x-)2=-,原方程无解 C.(x-)2=,x1=+,x2= D.(x-)2=1,x1=,x2=- 二、填空题 1.若8x2-16=0,则x的值是_________. 2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________. 3.如果a、b为实数,满足+b2-12b+36=0,那么ab的值是_______. 三、综合提高题 1.解关于x的方程(x+m)2=n. 2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另三边用木栏围成,木栏长40m. (1)鸡场的面积能达到180m2吗?能达到200m吗? (2)鸡场的面积能达到210m2吗? 3.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,并说明你制作的理由吗? 答案: 一、1.B 2.D 3.B 二、1.± 2.9或-3 3.-8 三、1.当n≥0时,x+m=±,x1=-m,x2=--m.当n<0时,无解 2.(1)都能达到.设宽为x,则长为40-2x, 依题意,得:x(40-2x)=180 整理,得:x2-20x+90=0,x1=10+,x2=10-; 同理x(40-2x)=200,x1=x2=10,长为40-20=20. (2)不能达到.同理x(40-2x)=210,x2-20x+105=0, b2-4ac=400-410=-10<0,无解,即不能达到. 3.因要制矩形方框,面积尽可能大, 所以,应是正方形,即每边长为1米的正方形. 23.2解一元二次方程 判别一元二次方程根的情况 教学内容 用b2-4ac大于、等于0、小于0判别ax2+bx+c=0(a≠0)的根的情况及其运用. 教学目标 掌握b2-4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2-4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2-4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用. 通过复习用配方法解一元二次方程的b2-4ac>0、b2-4ac=0、b2-4ac<0各一题,分析它们根的情况,从具体到一般,给出三个结论并应用它们解决一些具体题目. 重难点关键 1.重点:b2-4ac>0一元二次方程有两个不相等的实根;b2-4ac=0一元二次方程有两个相等的实数;b2-4ac<0一元二次方程没有实根. 2.难点与关键 从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2-4ac的情况与根的情况的关系. 教具、学具准备 小黑板 教学过程 一、复习引入 (学生活动)用公式法解下列方程. (1)2x2-3x=0 (2)3x2-2x+1=0 (3)4x2+x+1=0 老师点评,(三位同学到黑板上作)老师只要点评(1)b2-4ac=9>0,有两个不相等的实根;(2)b2-4ac=12-12=0,有两个相等的实根;(3)b2-4ac=│-4×4×1│=<0,方程没有实根 二、探索新知 从前面的具体问题,我们已经知道b2-4ac>0(<0,=0)与根的情况,现在我们从求根公式的角度来分析: 求根公式:x=,当b2-4ac>0时,根据平方根的意义,等于一个具体数,所以一元一次方程的x1=≠x1=,即有两个不相等的实根.当b2-4ac=0时,根据平方根的意义=0,所以x1=x2=,即有两个相等的实根;当b2-4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解. 因此,(结论)(1)当b2-4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即x1=,x2=. (2)当b-4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2=. (3)当b2-4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根. 例1.不解方程,判定方程根的情况 (1)16x2+8x=-3 (2)9x2+6x+1=0 (3)2x2-9x+8=0 (4)x2-7x-18=0 分析:不解方程,判定根的情况,只需用b-4ac的值大于0、小于0、等于0的情况进行分析即可. 解:(1)化为16x2+8x+3=0 这里a=16,b=8,c=3,b2-4ac=64-4×16×3=-128<0 所以,方程没有实数根. (2)a=9,b=6,c=1, b2-4ac=36-36=0, ∴方程有两个相等的实数根. (3)a=2,b=-9,c=8 b2-4ac=(-9)2-4×2×8=81-64=17>0 ∴方程有两个不相等的实根. (4)a=1,b=-7,c=-18 b2-4ac=(-7)2-4×1×(-18)=121>0 ∴方程有两个不相等的实根. 三、巩固练习 不解方程判定下列方程根的情况: (1)x2+10x+26=0 (2)x2-x-=0 (3)3x2+6x-5=0 (4)4x2-x+=0 (5)x2-x-=0 (6)4x2-6x=0 (7)x(2x-4)=5-8x 四、应用拓展 例2.若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示). 分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围. 解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根. ∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0 a<-2 ∵ax+3>0即ax>-3 ∴x<- ∴所求不等式的解集为x<- 五、归纳小结 本节课应掌握: b2-4ac>0一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实根;b2-4ac=0 一元二次方程ax2+bx+c=0(a≠0)有两个相等的实根;b2-4ac<0一元二次方程ax2+bx+c=0(a≠0)没有实数根及其它的运用. 六、布置作业 1.教材P46 复习巩固6 综合运用9 拓广探索1、2. 2.选用课时作业设计. 第五课时作业设计 一、选择题 1.以下是方程3x2-2x=-1的解的情况,其中正确的有( ). A.∵b2-4ac=-8,∴方程有解 B.∵b2-4ac=-8,∴方程无解 C.∵b2-4ac=8,∴方程有解 D.∵b2-4ac=8,∴方程无解 2.一元二次方程x2-ax+1=0的两实数根相等,则a的值为( ). A.a=0 B.a=2或a=-2 C.a=2 D.a=2或a=0 3.已知k≠1,一元二次方程(k-1)x2+kx+1=0有根,则k的取值范围是( ). A.k≠2 B.k>2 C.k<2且k≠1 D.k为一切实数 二、填空题 1.已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________. 2.不解方程,判定2x2-3=4x的根的情况是______(填“二个不等实根”或“二个相等实根或没有实根”). 3.已知b≠0,不解方程,试判定关于x的一元二次方程x2-(2a+b)x+(a+ab-2b2)=0的根的情况是________. 三、综合提高题 1.不解方程,试判定下列方程根的情况. (1)2+5x=3x2 (2)x2-(1+2)x++4=0 2.当c<0时,判别方程x2+bx+c=0的根的情况. 3.不解方程,判别关于x的方程x2-2kx+(2k-1)=0的根的情况. 4.某集团公司为适应市场竞争,赶超世界先进水平,每年将销售总额的8%作为新产品开发研究资金,该集团2000年投入新产品开发研究资金为4000万元,2002年销售总额为7.2亿元,求该集团2000年到2002年的年销售总额的平均增长率. 答案: 一、1.B 2.B 3.D 二、1.p2-4q=0 2.有两个不等实根 3.有两个不等实根 三、 1.(1)化为3x2-5x-2=0 b2-4ac=(-5)2-4×3×(-2)=49>0,有两个不等实根. (2)b2-4ac=1+4+12-4-16=-3<0,没有实根. 2.∵c<0 ∴b2-4×1×c>0,方程有两个不等的实根. 3.b2-4ac=4k2-4(2k-1)=4k2-8k+4=4(k-1)2≥0, ∴方程有两个不相等的实根或相等的实根. 4.设平均增长率为x,(1+x)2=720000000, 即50(1+x)2=72 解得x=20%, ∴年销售总额的平均增长率是20%. 23.2解一元二次方程(公式法) 教学内容 1.一元二次方程求根公式的推导过程; 2.公式法的概念; 3.利用公式法解一元二次方程. 教学目标 理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程. 复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导公式,并应用公式法解一元二次方程. 重难点关键 1.重点:求根公式的推导和公式法的应用. 2.难点与关键:一元二次方程求根公式法的推导. 教学过程 一、复习引入 (学生活动)用配方法解下列方程 (1)6x2-7x+1=0 (2)4x2-3x=52 (老师点评) (1)移项,得:6x2-7x=-1 二次项系数化为1,得:x2-x=- 配方,得:x2-x+()2=-+()2 (x-)2= x-=± x1=+==1 x2=-+== (2)略 总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m)2=n的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 二、探索新知 如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题. 问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根x1=,x2= 分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:ax2+bx=-c 二次项系数化为1,得x2+x=- 配方,得:x2+x+()2=-+()2 即(x+)2= ∵b2-4ac≥0且4a2>0 ∴≥0 直接开平方,得:x+=± 即x= ∴x1=,x2= 由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,将a、b、c代入式子x=就得到方程的根. (2)这个式子叫做一元二次方程的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法. (4)由求根公式可知,一元二次方程最多有两个实数根. 例1.用公式法解下列方程. (1)2x2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x2-3x+1=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 解:(1)a=2,b=-4,c=-1 b2-4ac=(-4)2-4×2×(-1)=24>0 x= ∴x1=,x2= (2)将方程化为一般形式 3x2-5x-2=0 a=3,b=-5,c=-2 b2-4ac=(-5)2-4×3×(-2)=49>0 x= x1=2,x2=- (3)将- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文