第一课-《全等三角形》复习教案(学案).doc
《第一课-《全等三角形》复习教案(学案).doc》由会员分享,可在线阅读,更多相关《第一课-《全等三角形》复习教案(学案).doc(4页珍藏版)》请在咨信网上搜索。
第11章《全等三角形》复习教案(二) 一、教学目标: 1、能用三角形的全等和角平分线性质解决实际问题 2、培养逻辑思维能力,发展基本的创新意识和能力 二、教学重点难点: 1.重点:能用三角形的全等和角平分线性质解决实际问题 2.难点:能用三角形的全等和角平分线性质解决实际问题 三、教学过程 一、预习交流: 知识要点回顾 (1)知识要点回顾1 1.角平分线定义:把一个角分成两个相等的角的射线叫做角的平分线 2.用尺规作:已知角的平分线 3.用尺规作:过直线上一点作已知直线的垂线 4.用尺规作一个角等于已知角的理论依据是: SSS (2)知识要点回顾2 1.角平分线的性质定理: 角平分线上的点到角两边的距离相等. 2.角平分线的性质定理几何语言: ∵ AD平分∠BAC, DB⊥AB , DC⊥AC ∴ DB=DC (3)知识要点回顾3 1.角平分线的判定定理: 到角的两边的距离相等的点在角的平分线上 2.角平分线的判定定理几何语言: ∵ DB⊥AB , DC⊥AC,DB=DC ∴ AD平分∠BAC (4)知识要点回顾4 1.结论:三角形三条角平分线的交点 到三角形三边的距离相等 2.结论:到三角形三边的距离相等的点是三角形三条角平分线的交点 考点4 角平分线的性质为________________________________________ 用法:(如图)∵_____________;____ _____;_____ ____ ∴ ≌ ( ) ∴QD=QE( ) 考点5、角平分线的判定_____________________________________ 用法:∵_____________;_________;_________ ∴ ≌ ( ) ∴ ∠EOQ = ∠DOQ ( ) 即:点Q在∠AOB的平分线上 角平分线性质定理:角平分线上的点到这个角两边的距离相等。 角平分线的判定: 到一个叫两边的距离相等的点在这个角的平分线上。 角的平分线是到角的两边距离相等的所有点的集合 2、考点基础练习 (1)角平分线 角平分线性质定理:角平分线上的点到这个角两边的距离相等。 角平分线的判定: 到一个叫两边的距离相等的点在这个角的平分线上。 角的平分线是到角的两边距离相等的所有点的集合 1、如图,在中,,平分,,那么点 到直线的距离是 cm. 2、如图,已知在Rt△ABC中,∠C=90°, BD平分∠ABC, 交AC于D. (1) 若∠BAC=30°, 则AD与BD之间有何数量关系,说明你的理由; (2) 若AP平分∠BAC,交BD于P, 求∠BPA的度数. 二、展示探究: 例题1、、已知:如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,DB=DC, 求证:EB=FC 例题2、如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高. 求证:AD垂直平分EF. 例题3、已知:如图,CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O,且BO=CO. 求证:O在∠BAC的角平分线上. 三、检测反馈: 1、如图:在△ABC中,∠C =90°,AD平分∠ BAC,DE⊥AB交AB于E,BC=30,BD:CD=3:2,则DE= 。 2、如图,已知在△ABC中,∠A=900,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为 cm. 3、如图,已知点C是∠AOB的平分线上一点,点P、P’分别在边OA、OB上。如果要得到OP=OP’,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为____________: ①∠OCP=∠OCP’ ②∠OPC=∠OP′C; ③PC=P′C; ④PP′⊥OC (第3题图) A P B D E C 4、如图,在ΔABC中,BC=5 cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则ΔPDE的周长是___________ cm. (第4题图) 第 4 页 共 4 页- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等三角形 第一 全等 三角形 复习 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文